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CHAPTER I. INTRODUCTION

1.1 Magnetostatic-Wave (MSW) Devices

The purpose of this work is to study magnetostatic-wave

propagation in a rectangular waveguide partially filled with a

lowloss ferrite material. The dispersion relation and group time

delay characteristics of the waves are investigated.

Magnetostatic waves are slow dispersive magnetically domi-

nated spin waves that propagate in magnetically biased ferrite slabs

at microwave frequencies. The most common lowloss ferrite material

used for MSW propagation is epitaxial yittrium iron garnet (YIG).

The recent interest in MSW devices at microwave frequencies

has accelerated because the growth of uniform, high-quality, low-

loss epitaxial YIG films with a large aspect ratio has been improved

and the design and fabrication of efficient RF to MSW transducers

have been developed and realized.' The first development provides

a uniform internal dc magnetic bias field so that many inhomogeneous

transmission problems associated with nonuniform internal fields are

eliminated. The second development reduces coupling losses from RF

waves to magnetostatic waves so that the overall insertion loss

can be reduced greatly. Another motivation for exploring the use

of magnetostatic waves in microwave signal processing is due to

the fact that MSW operation is pcssible in the frequency range of

1.0 to 20.0 GHz with wide instantaneous bandwidths in contrast to

conventional devices such as surface-acoustic-wave (SAW) devices

which usually operate on the IF signal.

. ...................... ..........
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A comparison of the relative merits of MSW devices and

SAW devices is given by Owens et al. 2and Collins et al. and is

*presented in Table 1.1. From this table it can be seen that the

tunable properties, the lower propagation losses at microwave

frequencies, the invariant transducer geometry, and the adjustable

delay properties of magnetostatic-wave devices present a major

advantage in terms of device performance over other existing devices

such as SAW devices.

Table 1.1

Characteristic Features of MSW and SAW Devices 
2 3

Property MSW SAW

maximum delay Hundreds of ns Hundreds of lis

per cm-

Transducer geometry Simple/moderately Complex
corrrl,)ex

Trransducer dimensions Invariant with Decrease as fre-

frequency quency increases

Bandpass filtering Good Excellent

capaii ity

Adjustable delay Yes Not in a single
device

Power handling, 1 mw 1 W

* .Typical velocity (krn/s) 10 to 1000 2 to 6

Typical attenuation 5at I I at 1 GHz;

(dB/ps) p I t C 6r0 at 10 GlHz

*Di spers IorY Nc

,lased1 n r( 2erA 1 I t erqtcr , e ,s si-bl i ea, ion,- of

MSW devi ces are Lumrr, e T e .: e c t t abl it, can

bv-ee t.Yxtt MSW iei: -1e 1ca <rsi
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Table 1.2

Prime Applications of MSW Devices

Device Microwave Function

Nondispersive Phase locking of pulsed oscil.lator,

delay line signal correlation, communication path
length equalizer, rate sensor

Dispersive Group delay equalizer, pulse compression,
delay line compressive receiver, rate sensor,

frequency synthesis

Tapped delay ECM deception, PSK matched filter, Fourier
line transformation

Variable delay Target simulation, electronic timing

line

Bandpass filter ECM, radar, communication satellite
repeaters

Tunable resonator Narrow-band frequency filter and
oscillator applications

MSW directional Signal routing, switched delay line

coupler

MSW oscillator Stable microwave source

. . .. .



microwave communication systems. As noted in this table, their

prime applications are in the areas of delay lines, filters,

10-19
oscillators, and resonators. The conventional means of exciting

magnetostatic waves are by metal transducers that have been analyzed

extensively in the literature.
2 0- 35

1.2 Previous Investigations.

Previous analyses of various types of geometries for MSW

propagation have included the following:

1. The first structure consisted of a YIG film deposited on a

substrate (see Fig. 1.1) and Vas investigated by Damon and Eshback.
3 6

The input and output transducers were microstrip lines. They deter-

mined the different propagating modes that can exist in this structure.

A summary of all the propagating modes for different magnetization

directions was reported by Adams et al. 9

2. A multilayer planar structure with ground planes was con-

sidered by Tsai et al. 3 7 and others 30,3 9 (see Fig. 1.2). In this

work, wave propagation in a normally magnetized structure of infinite

width was analyzed. Daniel et al. reported a complete summary of

the wave propagation in this structure for principal directions of

magnetization.

3. Young41 considered wave propagation in a metallic trough

partially filled with YIG material as shown in Fig. 1.3. He derived

the dispersion relation for two important propagating modes that

can exist when magnetization is parallel to the slab plane.

4. Finally, a long rectangular YIG rod with metal boundaries

was investigated by Auld and Mehta4 2 (see Fig. 1.4). They studied

.. , . . . . . .

.



i/p

SUBSTRATE
Hd

FIG. 1.1 YI2 SLAB IN FREE SPACE.

-7- 7 .- 5.



II

Zt x Hd t4- ;

FIG. 1,2 YIG SLAB BETWEEN TWO GROUND PLANES.

. . . . . . .



-7-,

p ~YIG ~I

b

Hd c



b

YIG dc

0 a x

FIG. 1.4 CONMLETELY FILLED GUIDE.



-9-

two possible modes of propagation in this structure, using a mode

analysis technique, and derived a dispersion relation for each case.

It is to be noted that in all the reported structures, the ..

ferrite is inside an unbounded space except when the guide is com-

pletely filled. The case of a ferrite slab enclosed in a waveguide

as shown in Fig. 1.5 has never been studied. This study will con-

centrate on the analysis of this general structure.

1.3 Outline of the Present Study

The purpose of this study is to analyze magnetostatic-wave

propagation in YIG slabs placed inside a rectangular waveguide as

illustrated in Fig. 1.5. The general formulation of the equations

for magnetostatic-wave propagation and some known results for cer-

tain special structures are given in Chapter II.

In Chapter III, the case of a ferrite slab in contact

with both sidewalls of the waveguide is discussed. This part can

be treated as a bcurnlary value problem and the method of mode -
S

analysis is conveniently aPIlied. In this method a certain mathemat-

ical form for the :ntential function in each region is adopted so

that it satisfies the boundary ccnditiors. Matching the potential

tields and normal field comronents at th'e slab interfaces gives a

system of linear equations which, upon mathematical manipulation,

yields the desired dispersion relalion.

When the width cf 1he F-11a is .s th.an the w dth of the

-uide, that is, when x ( " ( ir. . , the ms-]e analysis appears

tr be fruitless atn' tie in'. , Vj e-<i . t .:e:." '. be more %a .,rcpriate.

For s implicity, the s lab is s:nrse 1. (t - .

. . ,. ... °.. ."

. . • . ° o

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
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mathematically it represents the scarce of magnetic charges. In

this way the integral. equation is tractable and yields the disper--

sion relations. This is given in Chapter IV. Parallel and normal

magnetization are considered separate'!y' in the wave analysis of

Chapters HII and IV.

In Chapter V, numerical- methods employed in obtaining

numerical data and dispersion plots are presented. The results

presented in this chapter extensively describe the device behavior

and performance under different geometrical confieurations.

Finally, Chapter VI summarizes this study, sets out con-

clusions, and offers surFgestions for further stul!::. Appendix A

contains sample comjputer rro-ra=s developed toc investigate the

structure show-n in .17 or 11 d in the x- and z-directions.



CHAPTER II. MAGNETOSTAT IC-WAVE F-CF -A ,GA ,

2.1 introduction

In this chapter, the mathematical foundation for ragnetostatic-

wave propagation in unbounded and bounded ferrite media is introduced

and the governing equations are derived. With the help of a per-

meability tensor derived for an anisotropic magnetic medium, it is

shown that plane wave propagation of electromagnetic waves in

unbounded ferrites leads to three regions of interest in the

frequency (w)-wave number (K) plane. It is seen that magnetostatic-

wave propagation is ,ossible onl; in a limited range of wavelengths.

In this range of wavelengths, Maxwell's equations can be simplified

which makes it possible tc ignore the electric field and derive the

magnetic field directly fr a sca.ar -,ctential field. When this

approximation U; u.p:, (. artial differential equations

inside the YIi lat erved,.

Wave Iropacatic. ir i:ee: >,c anular wavec<uioe under

e na-netcst at Is a; r :-:;-.a' . .sd and a set cf boundary

ccr~d t ion~s whiA. nmu:' h-. sat i :! a: the -ea :urf% -es and s!ab

;i.terfaces are 1 tre cc, innn , s; e ,-.' n -truclur,:s -re

analyzed and the results al'e mrccen;ed•

. Derivation at' Effective ?ereailit7.

}herr i es arc c~lr a,.' '-] i. : .:'.'. nt i,' mt ,e 51 al ? 'e hi, oh

resistivity v.':.:' , , 2.;:' 5', '. . . '

mio(r(wave f're;;e c-,:. Th " rr ,,"' t f a ferrite is -.

a, i 'ri 1, :u t i nl s N: e ' 4' " 2 ' . r.. '. ' : U / t : : ,4 . , t h I~ ' '.'' t] ' , '].

[,.L -- - .. _ ." °j . * . . . . . .• °,• ° . • • °, . . .. .. . . .. , •. . . . .
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forces and core losses- ar -: i-" 'C<.

TA =lb K . 2.1)

weere M =the total magrnetic m,,oment o ni t VOilUte,

H = thle total internal:. magnqetic field and

y= the gyrorragnc-" ic rvc-;ichis ecai,_ tr, . ~.ein Crs system.

Assuming harmonic timrre dejendence Eq. 2.1 nay be expressed as follows:

KM+ 7.m-e,~ + e xn + .ne (2.2,

woere N is the saturati on magnetization vector; H is the dc magnetic
0

fedvector inside the slab which, due to thIe neg1_ect of deniagneti-

' 6 547 - -

soton i edsis the same as that outside t he slab;' and mi and h

are onie sO mag-netic moment Fer unit vriIume and the FF m'gnetic field

:nrLensi t.:: vectors, resrectively,..

:.ssumhinC the do fields are -_,cK _ra- er h'an- the REY fields and--

nef-l Oct t 20 te te rs of_ s rt 1. 1 (l then n4 1 t .

i(:4 xLh+ mxh H

IX0 is i. tes sciet n aiaI~ea~uo~otcHte



rK WW /(W2 2)
1 M o

0 0 0

and

0M0JYM

Expressing these results in terms of a permeability tensor yields

b = V (h +m) = i*h

where

11 ii

and 71is the relative permeability tensor and is given byVI8

F I jK1  0
j~ K W 0i (2.4a)

where u 1 l+X. If H is in the x-direction, p' from Eq. 2.4a
o r

becomes

1 0 0

r 0 j1(.b

The relative permeability tensor given by Eqs. 2.4 is the value of

effective permeability that mu~lt be used in Maxw~ell's equation for

*regions containing ferrite-~ in orkr to include the effect of

exchange forces, w 0in Eq. 21.4 must b~e replaced simply by4 8

= Wo Wex 2 K2 where w~e l and K are the lattice constant

r~. 0. ex U 

.

ex. e 0



and the free-space wave nmresctvyand H exis the internal

texchange field. M4axceli's e~luat ion in con,,unction with the permeability

tensor from Ecxs. 2.4 can. L(- uzie 1,ine-wave propagation in

unbounded ferrite mua

.3Plane Wave Proparation in Unbounded Perrites

Magnetostatic waves have waveliengths much greater than the

lattice s3pacing and thierefore_ it is appropriate to use classical

theory rather th-an quantum thieory. Tihe smrall-signal theory of a

lcc"sless ferrite is basled un MIaell's equations. They can be

written49,5 in a form that includes the permeability tensor of the

ferrite. A plane wave solution of th-e form ej~tr is assumed.

it therefore follows that:

V x h j= c

00

V ( -

-olution, to i.iower- L)-;-e by etde,. 5 1  Iti con

venient to nsrwnxe tit i~ a- field is in the z-direction

and the proratgat ion vectri In ti(c plane at an antgle t3 withi

t~le 7, ax.2 . lncisiin< + t,'_r" in thie -permeaility tenisor,
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2 ( K2 K) -in + 2 H - ( 2 - - v 2 ) sin. 6 + 2K
2 cos2 el

K s n1 +L

K- 21 ( - i) sir 2 e +
a

,(2.6,)

where K2 
= o

2 EPo . The correspandinF RF electric and magnetic fields are:

I(K /K) 2 - 10 o. Cos e

K :in 2 0 - (K /K)
2

1 0K 0 Io -o (
e - Cos e e r (2.7)

- sin E

(K /K)
2

0

ji(K /K)
2  

-
e .

0 e (2.8)
K1

p(K /K )2  1
- cos e sin 6

K sir, ,- (K /K)
2

a

Equation 2.6 defines * manifc ,-f disre----n curve-, bountdea

by curves e = 0 degrees and 0 = 90 degrees a: shown in Fig. 2.1. At

each value of 6 the medium supports two types of waves, an ordinare

wave for which K/K °  1 and an extraordinary wave for which K/K

becomes very large at certain frequencies. As seen in ic. 2.1

the inclusion of exchange forces causes the lower branches of the

extraordinary curves to bend upward for large values of K/Ko.

The lower branches in Fig. 2.1 may be divided conveniently

into three regions.

I. K/K 1. Here the electric an magnetic fields of Fqs.

2.7 and 2.8 are of comparable 7rrnitude. 71is may be termed the

region of "electrom.itnetic pro :c"tinr.."

:% : : i: :.......: " . ... " " . . "
". " • ' " " _ " ' ' ; _ " -- - .L " , " •.. • " - -. "." "- . .. . . . . . ..- • - " * -
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2. 1 << K/K < /(. KK 2 ). rm Eq. 2.7 it is seen that
00 eX 0

the electric field is negliFibly :mall in this region compared with

the magnetic field and can eventually be nelected. Equation 2.8

becomes:

h !/K , (2.9)

t /Kot

where terms of order (K /K) 2 have beer. reglcted. It is shown
0

easily that the magnetic field in Fq. 2.-) satisfies the magnetostatic

equations which can be derived from Eq. 2.5 as follows:

V x = 0 (2.10a)

and

v • h) 0 (2.10b)

This may, therefore, be termed the region of "magnetic propagation."

It corres~oids to the very flat rortions cf the dispersion curves

where the frequency is W 2 = + wM sin2 e). These waves are,

therefore, characterized by a low-phase velocity and a negligibly

small group velocity.
. /(, eQ 2 K 2 ) - K/K/ Here the magnetic field is again

3. 0 ex 0 0IO ee h a

given by Eq. 2.9. However, the exchange term now has a significant

effect on the shape of the disoersiorn curves which bend urward into

t to miliar exchange spin-wave manifold:

2, + ' ; 2K2 )( + ,, ? -2  + si1 2

0 Ox 0 tX

This may be termed the regiorn (f' "exclhar>o r ropagation." These

i mlli im i f*mmmiIn'1It~~1fmm1i~it~~mmhm



rer i ns are c-r cur-e r tL'r i : f', ei ' moe the propagation

characte ristic:s v.a..r,, ~ r'u: KI

"he wave ~ c rt ~ ie :eew.a. in the absen-rce of' any

4 'ur~aces a n .: basica' 1-: in" i e ~ ( h e r t

material which is of siniinrtvauet 1 irieeringr frob~lems. Most

4-)' the structures studlied so far in the it-erature are slabs of

finite thickness and ir-f:irte iz h In the next sect ion the,

governing equations for nants t cwv ropagation are de rived

and. the boundary conurtions that n,,usa be satisfi-ed by the rrec agating

waves are given. Finite timesn; f the ferri4te matecrial and; the

relative orientation of, the magnretic biats field with respect to the

propagation vector K. lea i to- different nrodes of' propagati len which are

discussed in. the next sec t icri.

Wave propagat I ci in a 'rIte :eou7; i infi.i te e~xte-n-t was

crs-dered in th e revs 4n :e, idnv n s ealization

a: n riporoxiiiatiort: cthepa ,. :r-av io a,'a tion in a finite

5 2-54
chu f a rectan-l.art&' u tmnc:exKEI> 1.) -

... e transve rse dinsenc ,r, e : ~ ;vc 'c :: r:id t t th e

e ' ccti :masretic w ac . i~ E it 1'.'. I : ceter

cur1-oft, waves or Icb t:

2 6cverrsln.: I;~> . . . .. w:uw ~

at;la

and



This permits the definition o' a magnetic scalar potential by

defining h = V . The magnetostatic field inside the ferrite is

-over'ied by the eqtt, iun:r-

V = 0 (2.12)

When H is either in the x- or z-direction, Eq. 2.12 takes the

following forms:

+ + y) = 0 , Hd H z (2.13a)

and

xx +  zz +  ) = 0 , udc i (2.13b)

The scalar magnetic potential satisfies the following equation:

V2¢ = 0

or

xx +  yy = 0 (2.13c)

outside the ferrite.

In all succeeding analyses, the time harmonic variation ej~t

is assumed and is omitted for simplicity. The wave propagation is

-j Ky
in the y-direction and varies as e Thus Eqs. 2.13 reduce to

the following forms in the YIG slab:

PX + = K , Hd f z (2.1ha)

x + = pK2 Hd l (2.14b)

and in air

K 2

xx + zz = (2.1 4 c)

L.4.2 Boundary Conditions. The YIG slab is enclosed in a

metallic waveruide and the following bouindary conditions should be

satisfied at all metallic guidewal]s (see }I. 1.5):

q . .. .. . ... .. . . . . . . . . ... t

"-."-- - .'" - -'.. -.-" '-"-- - -"- -. :" - -'"." . '"-' - -"'- . " ". " . - . - - . - . . . . - • . - - -



x ' (2.15a)

z (2. 5b)

As seen in 14 5, -- 1 t10 mts:'- be satisfi1ed at

the focur slab-air intt cr1 ace,, art, Ic, 1 1 ws

4 ~. coii'r~a ao x' Y, a -) , 2. 16b)

5. b cotfwvat 7 = 7 (2. 16c

6. b,, contin,,I-Uos ait Y. , x ', (2.i(d)

Int g-eneral, this prciL or. is wssI vta tIte integ ral equatio-n

!,tli where the slab cari be c-t:Iee obe thie source of' magnetic,

car1 Te. This- t'ormulatdl's, 0.. <a couplex, is very. successful when

i e cib will.h is IeL tu guden 3it ' ii ,rcvidf- ascsurar-e

j-,Ev. hi ngrqI cti iC 4*Lscussed andS an zed in Chatter IV.

cc it, jail>j v 0  a1ic9, lb exterlds, to both guidec

us ev.al s, heji 7 ' r' "' < i Usu~in Iar~'; va 1 i "Trobiemn

12this case. 1hi cue ,i * 'r

2.4. 3 Notic I' r V' 49raitl

in, thin fJIns B"-s Lee 1v(. 4 iI

trogairflC al' I' "'1(

flea e three t)

bias mag7neti c f'ield 3 r mao - ta ICo( i, -'I' t

'TLp sef modes uare (iori: -a eA rt<ecc ' 271t:<f
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passband and magnetic bias tunability. The following is a brief

discussion of these modes.

1. The magnetostatic-surface-wave (MSSW) mode in which the

bias field Hdc is perpendicular to the direction of wave propagation

and both are in the plane of the film. This mode has highly

anisotropic propagation in the film plane and the mode energy is

confined to the "top" surface for forward propagation and to the

"bottom" surface for reverse propagation.

2. A second mode is the magnetostatic-forward-volume wave

(MSFVW) in which the bias field Hdc is perpendicular to the film

plane and is characterized by approximately isotropic propagation

in the plane of the slab. The lowest-order mode is usually most

easily excited.

3. The third mode, the magnetostatic-backward-volume wave

(..!SBVW) exists when the direction of the bias field and propagation

are the same and in the film plante. T his mode has opposite phase

and group velocity directions, is highly anisotropic, and is

multimoded as in the MS!FVW case.

Fig<ure 2.2 sh!ows the dispersion characteristics of the three

m'.:dev f operation Trojagating only in certain frequency ranges. 9

Ln this figure thl; oil 'ersion characteristic )f a surface wave when.

,)rie of tl. surfaces i: metallized is alsc shon. As can be seen,

I ant I r. L',:Is: dwin u:reaces and device performance is now

si la ar. 1 1'.: ., -~ cr, c C . rc''isis u its group

7--, 0
p-. t w c,.v -ar,.c , . :,,, l-win- .rtwi , he

............................ . . . . ...
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progre.s ive s;tructurallu! device is citLed and briefly

analyzed. In ::ost I t em- :.nti'te :ructures , the YI slab is

asslumed to have finit: hik'2 a ndi Lr 'iinte width. The latter

:1.1zsurpt ion is niot rear i, -,*:;ner~ e n--te and needs to be

rmodified. in Chapters-. 7IT and IV finite-width slabs are considered

under general boundary conditions.

2.4~.4 Results- of Pr .vious investigations. A literature

review of propagating- waves in several structures is presented next.

1. Unshielded slab in free space.9 This configuration is shown

in Fig. 2.3 where three principal directions of magnetic bias fields are

shown. The three different cases are discussed next.

a. H dcin the x-direction. The propagating waves in this

case are called magnetostatic-surface waves (MSSW) and the dispersion

relation is given by:
6 1

2Kt (W /2)2
e = [W + (w,/2)]2 W2(21' -

o .4

where t =the slab thickness.

b. Ifd in the y-direction. The proragating, waves in this

case are termed mapgnetostatic-backward-volume waves (MSiVW) and the

d~prsoL relation is found to 1,e: 6 2-64

2 cot nxKt = - 1(:D. 18)

where

c . ifd in thie z- r( ,t o n . wrLavcs, :trc al

relation isi ivren :'"
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ar (Kt !: = (2.19)

where

2
0

k), + ) 2
0 C

The three waves are for a slab extending in width and length to

infinity but with a finite thickness. Equations 2.18 and 2.19

provide many modes due to the sinusoidal nature of the dispersion

relations.

2. YIG slab between ground planes. 3 7-3 Two cases of interest

are dicussed (see Fig. 1.2):

a. Parallel magnetization. The dispers ion relation is

g-iven by: 0

2Kt (1 - K - tanh Ks )(P + K - Ks)1 1 1 (2.20)
e ( +K + tanh Ks )(-K + 1anh Ks (

1 1 1 2

". orma Ia,, I, aticn, 'hi: dispersion relation for this

1tar (, :wt -= ti (2.21)

W}:orot o" :- ;., I'

3 . >i'aL]:, 22,i l,.-j*]iw~} ar'i1I'l magnetization. The":

"-,n :etz-y for thi is s ;s".-: : [., 2.,. Two modes of propagation

A. 'lo onfiovation of Fir. 2.4a

arni is c'± ],, P>, !,r '::,-: '':" s!:.: ., is,. ;:ur.ce Wa\TC o c] n.-'s

tC I 0; ,  . , ?.

-- --J _' _'.-- -. . u'_ - - : . " - " -_" . . " .. ." -'.-" • . " •. " ... ." ", - . . - .n I -
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K. I ('I/2K I){{l 4h-(> n.) + )Coth -Yr a]' 1

(2.22)

where

y 'ena/) + nj2 /~,i

fr-ib + K

b . The secand, ma rses in thae canf! iaratia r1 f FIg 4.b

arm is referred to as th e ferrit.e-air (VA mde. Here- the srf'ace

wave fields cling, 'cl the unshieldedsufc. heds-ii nrltn

is given b y41

K -y (/K,){I + -~y' /y' + d(~r~ct. -Y rX + I

When t(l dlirectionr rcitlagatIi 7
S:crtme

reversecd . the praipert les aotf c:

'li5s %re sflO'.T. in 4'

*~~~ s s sho7)wn PIT: a. It 1'', -,l':4 e :u&t 1 ~t

eihrSurface a'
5
~'- :v-'~ <a. :'u

ranges"

* ..... he ~:eu:~u r-7-1
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b. Surface waves. Ihe dispersion relation for this case is

given by

K (n2i b)_ > 0 (2.25)

These two cases are plotted in !T'ig. 2.6b for H 500 Oe and 9
dc

a = b. In this particular case, the dispersion relation can be

shown to be independent of dimension a. 42 As noticed here in almost

all the structures, magnetostatic-wave propagation was studied in 0

unbounded media, thus giving only an approximately answer to the

problem of the wave propagation in tinite-width YIG slabs in the

presence of boundary surfaces made of metal. Under these general 0

conditions the solutions offered here by the widely known boundary-

value-problem technique would no lon er hold and a wore powerful

technique, i.e., the integral equation method, must be employed

in order to obtain reasonable answers.

%. S

I ~ .* *. .* . . . .. . . ."..,. . .- ,S

. . . . . . . . . . . . . . . . . . ... o-...

. . . . . . . . . . . . . .. ...... , .°



CHAPTE III. MODE ANALYSIS

3.1 Introduction

In this chapter magnetostatic-wave propagation inside a

waveguide partially filled with a YIG slab (see Fig. 3.1) is investi-

gated by the mode analysis technique. The slab extends to both

guide sidewalls and therefore the problem can be treated as a

boundary value problem.

The differential equations to be solved are:

= o

in the YIG and the Laplace equation V2) 0 in air. The potential

field in the air or YIG regions can be written in terms of a Fourier

series expansion. The Fourier series expansion in each region should

satisfy the boundary conditions at all metal surfaces as given in

Section 2.4.2.

Matching the potential functions at the slab interfaces

provides a system of linear equations. Rewriting the system of

linear equations in matrix form and requiring anontrivial solution

to the problem results in setting the determinant of the coefficient

matrix to zero. Solving this equation for roots yields the disper-

sion characteristics.

3.2 Potential Fields in the Air Region

In Fig. 3.1, the differential equation that should be solved

in the air region is the Lapl-.ce equation:

xx+ 4z) = K2 (3.1)

-32-
i".. .%. . • .- . . •. . . .. .• . . . .. . .- . . . . -.+
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Solutions to Eq. 3.1 in the air regions (I and III) can be written

as a combination of even and odd sinusoidal harmonics in the x-

direction and in terms of hyperbolic functions in the z-direction

as follows:

A cos x + B sin x sinh y' (b - z)in a in a
n=o

jKy
+ D cosh y'(b - z)] e- (3.2a)

in n

and

= A cos-x + [:ni" 'r -

3 3 a . a . n
S n~o

+~ ,' - , (3.2b)
3>

where

+

Equations 3.2 shoul nrc.w :a: ':. : . . .:' .'; :i i .: ,--ver. in

Section 2.4.2. -'rcm :runitii , = = t xX

This Fives

and

FTrom Condition v, = = ", ,. Th-i veo

ar, d "::

S = 0

2:1-"'"' :,- -"-:- . -. " . - ' -" ..- -. - ... . " , .'- .v .--. '. '. - ..- '.,.- .. -'-. . "-,',,' . ,' . ..- '.. . ." " "" ." .r.'

-_ .. "..I,,_f-_,:_i., .",. _?- _ _ _ . .- :.. _ . _ -" .",_ .,.-..- . . , - . ,. . .- _ . ., .. ,. " .,. . .



Therefore, Eqs. 3.2 sirc;f-, -c

- .. ~ ~r(; - ~) 'K, ~ 3a ii

3 = 22-

where A and D are unknown constants whilch will be determined when
n n

the potential functions arid normal magn etic fields are mratch-ed at

the slab interfaces.

3.3 Potential Fields in the YIG Region

The ciirecticon of the biac. magnetic field in the cross-section

plane can be chosen to be either p-arallel or nol-rmal to theIr YIG slab. 4

ieach, case the partial differential. equation for the Potential

f2elds in t ;e Y -en by V - (pV ) = Is dependent on the direction

a rnaunet zation. Theref-e each case i analyzed separately .

1. Parallel mane! ization. The relative permeability tensor

whenie i inn the n-directiontn (se i afrom Fa. 2. h is writte n

U0n n

the otenial uncions an nom!mgetcfedQemthda

thes*- inerfce0 I? - O

3.3 ' oenia' elsinth Y4.e'o

Th lrcto fte ismgetcf+. ntecos-eto

p~au ca bechoen t beeiter , ar~le ornoral t th YI slb.S

:V Ie . 1]a' llel -a:eiain .h relatve pemeabi ity torlhj::

w? _n-[ i,.in te xdirctio ( ' {.2 frm F. 2 b i wrtte
Eran Inn:_.kJ- -

; ,t' i r : S ...
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FIG. 3.2 PAFTIALLY LOADED WAVDIUIDE WITH H dcPARALLEL TO THE

YIG SLAB.
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n n
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2. Normal magnetizotion. The dc maagnetic field is in the

-iirect-or. (s ee Pi.3.3) and Lppe n-la 0 le cenaftytensor

tr~lmr. 2.4a is r:,ivei.b .,
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Equation 3.l14 represents the ;-ttr.

slab in terms of the unknown ct:

potential functions at the -

relation and allows the ot "i

3.4 Dispersion Relation

To obtain the dispersion r, i

3 and 5 from Section 2. 4.2 must be ,

magnetization case as follows:

1. Parallel magnetization. Cnlic: - . - . .

of the potential functions 3.3 and 3.4 (in aIr)vniB .t

z = z , z . This givesI. 2

£ A o - - x cost " 'I(b - z ) c =- cos a x( cosh ynZ2n a n n a2
n=o

+ C sin! n z ) e -
0 Ky (3.15a)

and

7,Dn LosInT x cosh y' e." = Cos j x(B cosh nz

n=c, 1=0

+ C sin yh ) K N  (3 15b)n Y 7

Condition 5 reqiLre.: continuVt, of S at the interfaces

z = z and z which, wr. equt- no (from Kjs. . 3.4 and 3.7), gives1 2

no..a. . 0 ."
A CC- r.- X

+ ' +oS. - + ., : c a x --

2 3 .h

V. .... I 2 V.

.- ..0. ' - . . . . -: - . . - ' . ) > ' - i . l : < . , , . - - . . . " " - . , . - , ' . . - . . - - . - - , . , , . , - - . . .

-". .. .'- : -.-.- '" - = - - """-- --- --- .- - - - --.. . -" - -. . - . -"- - -"," " ". . • .. .-.-.. -- . ' .' ,. ,:L . ''
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ann

It frUt lows from rOE * .l~~tnb>e suc le(- to) the others

ann thus:

y~ ~ ~ ' (.1 4 - -zyr'I

+ iy cosh

y + : Snrl

6r

K.~~~~~~~ r, 'u -= '~i : ' so z

-. 0 . '2 ~ n+
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The existence of noi:trival siutions for n B, C and D requires

the determinant of the coefficient matrix in Eq. 3.16 to be

zero. This yields "he foll wri.' k ,, erion relation:

•tn y t K K uy tnE...tnh -- sl -KKY(tanh yn sn I i - i n' 2 nnI K K 2

- tanh y')s + 0y" y'(tanh YnS2 + tanh y-'5) = 0 , (3.17)
n 1 r

where t is the thickness of' .he YiG slab and s and s are the thick-a1 2

nesses of air regions I

An alternate form of Eq. 3.17 is given by

2'ynt (Py - K K - -y' tanh y'( ry + K K - y' tanh y's )
enn 1 :1 1 ni 1 n- n2e (vry + K K + -n' tanh y-ys) ( 1Y - K K + y' tanh y's )

n 1 01 1 n n2

(3.18)

Equations 3.17 and 3.18 are exact dispersion equations which determine

the frequency ranc . t ro.tiaa rn £f each mode independent of the

existencc of the ci her Toe"

These euatit r c, a i;." form 'ea some or ll. of'"C

t'- , meta] lie boundr., "ia a',,(.'iv to infinity. All there

Is U&1 e stica ,i.ier tht, u Ia C 1t'e e n'erC'tE cases in ' late'

section.

2. 2;crnal ;rk'(ae -E 5kV,: ., Ma~t a: of the n~ot err: i i'uar .ions. ant

(!':sq. ,.t.) at the . t,erf'a-ee: -' : 7 : :: an th. !... ' <f i<a <.,

9C

2.. ..

-n 5:"-il 1
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n0 - jK y C o n Iw

I A cosh Yn(b- Z ) a X eoI a
n=On=o

I- sin x X] (Bn cos z + C sin nz ) e- jKy 3.19a)

i a jnz2 a n 2

xe- jKy 00 n-n

y' A sinh y'(b - z2 ) cos x eI 'Yn 2 a n a
n=o nnn=o

K 1Ka nK) j

- 1 Ka sin a x (Bn sin jz + C cos ) ejKy (3.19b)
j nw a Jn nf2 n n 2 ' (.9)

n7 -jKy K 1 Ka n

D cosh yaZ Cos x e Cos X sin XJ
n=o n n1n

= O

•(B cos z + C sin ~z ) e-jKy  (3.19c)

and

o 
e~~jKy[ 

n7To r 

'

D YI, sinh Ynz cos x e Yn a
n n a n a

" n=o n._o

K Ka Tr e-jKy•
.nasi n n nz + C cos ) (3.19d)

a sinn sin ) n(3

As can be seen in Eqs. 3.19, all modes except the zeroth order are

coupled and one cannot exist without the others. This phenomenon

leads to mode coupling whicri complicates the elimination 
of the unknown

" constants,A n  Bn, Cn and D ,in order to find the dispersion relation.

i::wever, the following procedure js adopted to obtain the dispersion

rlIt i oni: Multiplying< both sideF of Eqs. 3.19 by cos (mff/a)x,

ir,.ee,rai ir r alorig t .t interfAce from t, to- a ar.d noting that

0

.. . . .. . . .



0 -- ---- rr

Cos x sin - x Ix n m , n -+ = even

2na

... 2 .1 r r, , r. r,. odd

yields the following results:

A cosh y'(b - z - K cos , z - " in + -2
Is Im 2 :P1 5. 2 

.  5 2 M 2

tS

n) ( CnS y + C sin 0 (3.20a)
n=C

nr+=odd
9

4K Ka
Am ' sinh -'(b - z2) + Tr(I

.  : . + C - -

mmj J. 2E ms I 2 .2 l 7.

2 1, sin z7 + C co- ) 0 0 (3.20b)

r,.f=odd.

~ 72 M25  2 5 l

+K +

l L 1os " -i - m c)s ' l - (2 Bs. y5, 1  + --7-i,;2

1 . cos z + £'o lI. :

2 r 2  ( "

II y'~~r.K 'z .: (~. ~ +-.::.. 12.

f~~m:1W- - - (isin U- +n ' +:" 'I" +

n±Is5J51
- ''I "rf. ."fD~ l {m 'l !' 20
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r Upon elimination of A nand D nfrom Eqs. 3.20 the following system of
CIAl

* linear equations is obtained:

B mR M + C mm+ P (B ~ nRmn + C S) 0 (3.21a)
n~o

o ±m~odd

and

C0

B RI +C S' +p P (B R' +C S' ) 0 , (3.2I1b)
m Mm Mm oMno n nomn

n±m=odd

where

R = ('tanh y'S Cos -~z -y sin z)
mn mn M m2 n 2 n n 2

S (y tanh y'S sin Y- z + y Cos y
on mom M2 n02 0 n 2

B' =~ (Y' tanh y'zl co + -n sin~z

mn on rn n 01 ri 01

St ~ (-y' tanh y'z sin y z -y Cos y Z
orn nn m m1 n i n ni1

1 m n

n
n2 M2

2 2

and

14K-Id Ka/wr2T

Equations 3.21 provide an infinite number of linear equations in

B and C which can be exprersed in the followinfg form:n n

.....................
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PM I -.

(3.22)

Ff4 .. *r, N .11 12 I

I L*

where

= . q f'or I + .1 = old

S, and i

V.= S . ...

.- , : "'',rn a 4 : .e o .u t.i Ji lt . 3.22 for N . 's exists if the

(2,-, e c _ ent rmatrix is set to zero. In r -

su ;.:'tc: i a ,m> t , T e 1 . t .. .C-'_ n t is truncated to a

.. i ..,, , ,-l e C ' ." f cat - .oz n nur e"'cal resuit s

"j', 'd < , 9 
<d in Chu : V .

<.: l(--rate Cases-

0Si.r :irrrAulssisn: -:et -to : , tr ] It::' Is~ui?6 - ' i sit).,iz i I. s tijt ],'eu o en l
i v.:O ,t-Pr ' St~ >V ejIV~ N v37- >Ol-6 c  'f!t'a.s VIe: " . .$ ''

, ' 'h - e a s e "' " r u - ' , -. U. a' 1 ' , ,t : r e n t

structures are st us in:] In.h tis as t sa.

S %

- - - -. - -. * . . - * .V ."
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a. Filled guide. This case corresponds +o s = 0 and

s 2 = 0 and was presented in Case 4 of Section 2.4.4. From Eq. 3.17

the following is obtained:

(tanh y b)(K 2K 2 + P 2 Y 2 ) = 0 (3.23)
n 1 n

Setting the term in the first parentheses to zero in Eq. 3.23

gives

tanh (y b) = 0 (3.24)
n

If < 0, the solution to Eq. 3.24 is given by

n = . niT (3.25)

Combining Eq. 3.25 with Eq. 3.8 yields Eq. 2.24 precisely.

Setting the terms in the second parentheses to zero gives

2 = - K 2K 2 /u (3.26)
n 1

Combining Eq. 3.26 with Eq. 3.8 yields Eq. 2.25.

b. Infinite-width YIG between ground planes. If a - ,

the problem reduces to that of Case 2 in Section 2.4.4. Equation

3.17 yields the same equation as Eq. 2.20 upon proper substitution.

c. Infinite-width slab in free space. Letting a -,

s M, s 00 reduces the problem to that of Case in Section
1 2

2.4.4 and Eq. 3.17 in this case corresponds to Eq. 2.17.

2. Normal magnetization. H{ere one simple case of interest is

derived and the other cases simply follow the same procedure. Through

analysis, it was found that the zeroth-order mode is uncoupled and

corresponds to the case when a + , i.e. , when the YIG slab is

L!
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placed between two g-round Jlanes. "hiv strlucturc as siown in Fig.

3.4 has been investigated extensively. S740

it." I vP ivp H :. ; , -po' :71 It, the ,otczminint of [he

zeroth-order matrix ( ) ,ro, 'q. K.2 rust be set to zero as follows:
no

K SS
oID

det (M,) 0 0 - = 0

00 0

ant

S2' - ' . (3.27)

Upon substitution and simplification, Eq. 3.27 becomes

a(tarlh Kr + t,'nl. hr-
tan (at) = 2 - t: (3.28)

whf-re

!':, u ',•ti n 3 .5 iP 1 . :,, - -. - '- . .

_x 'i - ' . .-

tot cr -.... ...
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. y means of the "ma,--etic sources" and appropriate Green's

function an integral expressi-on for the potential function everywhere

inside the wavefguide (inciudin', the ferrite) can be written as follows:

pjx ~ fz) px y' ,')G1 (x,y,z) dv'

Y IG

vol ume

+ (x',' 1,2')G (x,y,z) ds' ,(4.1)

surlfaces

where (x,y,z) is the potential function, G is the Green's function,

(x,y,z) is the observation point and (x',y',z') is the source point.

4. Assuming wave propagation in the y-direction, the y-variation

of all functions involved in this study is therefore of the form

e K In this manner the following can be written:

c1 (x,y,z) = (x,z) e- Ky

G (x,y,z) = ((x,z) e-jKy

!jKy
G (x,y,z) =G(x,z-) e'

-iKy
b (X~z % = b17z)

x ' K

- - - . . .- - I



.. .. . I. . .. "" ." ' " : . .1

r:y -e =. :. .? - (C. ,

, 1. + , r,,+ <K"

~1.1

.., K• - 1.: L.."..''-<".i..mm..,k.



~ L y Th' uoinn: ' <::Io o x , z ) is that its normal

driv:ti;i vcha:l <nub> ' r. the four sidewalls.

inoIlIow i r t7, l- coinventional appjr(-ach, 6  x) can be expressed

as follows:

2(x,z) I ' (x Uz' s) +0(, (x,z)U(z Z c) , (4.4)

where J2 (x,z) and ' oK zX,5; aj the homo(,eneous p~artial differen-

Ii tial equation:

+ 2i(;,Jz _ K20(X,z) =0.(4)

* -he boundcary conditiorn 'or Sand G are:
12

12 0 at xd , xa

ats Z C

2 = -at z = Is

c)ormal Sol Uti4(rl S fcr G (x,z) and %x,z' can, now be written as
12

01(x,z) F X e? V z < Z' 4h.Ca

an a

*~~~~ > (7s = 3#p-K' , '4 (A)

W' I,- a F sMe' I' C WI C Cnic. I-I" = (n. +

.1 X



I

b

G2(xz) (x',zt)
--- 4---

Z G (xz)
4

o x

a
12. ,. j IiVil. .277;? 1)r.
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A cosh 'z' = 1 cosh y'(b - z') (4.7)n n n Yn"

T2. To obtain the second source coidit~on, Eq. 4.3 is integrated

from z' - E to z' + £ where F is - ver, small number. This gives

2s 2 _ 2n071, (4.8)
S ) a(i + c ) a

Differentiation of Eq. 4.6 and substitution in Eq. 4.8 gives

B sinh Y'(b - z') - A, sinh -yz' = 2 n2 x'
n n 11 y'a(l + 6 cos a

(4.9)

From Eqs. 4.7 and 4.9, A and P are obtained:n n

coo- x, cosh b - z')
n - ya(l + a s 1b ( 4 .la)

4n in tl( n.31fom

x , x z ,CO -- x', o h _' n _I OSL1

I? (b z I+sinh 'b (h -y b
y o n n

c-o o x' coos y-zX

FB =O~

n- ' o- y' x + osh )z c sh ' b-z t( -: (4.]1

nCOS Xci "

• . , - . . - . . , . . . . . -. . . • . . . . . .. . , . . . . ...-

"" " " """- - .. L-'"" " - E" qs".". 4-'.-."" 6 . ."' "."- and"-.."--'ield" t."-ree ' ". function"- --'.z " from Eq.-' 2 -"- -''",- '.-".
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4.3 EIquivalent Sources

In oruer to be able to solve the integral equation in terms 0

()I, t.1e. potential itild, t e Ti IC U Aad, t ho marietic charg es must be

deterined. athematically, the source of magnetic charges can be

considered to be the YIG stab. The mathematical f'orm of the magnetic

charges in terms of $ strcnglIv depends on the permeability tensor which

itself is a function of ..... i , i" _ . . .. di-ection. in this work

parallel and normal magnetization are studied and therefore the

ma metic charges are derived separately For each case.

To derive the magnetic charores, the small-signal magnetiza-

t>,.n vector (m) must be determined. Vhen the manetostatic approxi-

.'aton discussed in Section 2.4.1 is used, the magnetic field intensity

(1K) in the slab can be derived as ,e gradient of a scalar rotential
junction $(xz). inding h in terms o0 $(xz) leads to determination .

f and eveniuahly to a s (D 1IC,

5-

+S

1-. + -

p-=.+• . .,

1. 11. i a nit ecto no's '1 t're irh 'ip'Ise 7. ral -il'!,

sr~t rai: r veCt rie rlv

VS

- -= •

".-- ,." - " - ..'g....:. . " .a _- - .." ....- -.. . ... • , ,- .. .. . " -
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and 1r is the permeability tensor derived in Section 2.2. Substitution

for b and h in Eq. 4.14 gives

M= (jr - i).(V$ - jK$y) , (4.16)
lr

where I is the identity tensor, i.e., all elements are zero except

the diagonal elements which are 1.

Thus with the help of Eq. 4.16, surface and volume charges from

Eqs. 4.13 can be written as:

K - VI(r - Y).(vP - jK$ )] + jiKmy (4.1Ta)

and

Ps  [(i - i).(v$ - jK$y)].n (4.17b)

From Eqs. 4.17 it can be seen clearly that the magnetic volume and

surface charges depend upon the relative permeability tensor (ir). In

the following sections, pv and ps are derived explicitly in terms of the

.;calar poten jal in the slab ($) for the two cases of parallel and

normal magnetization.

4.3.1 Parallel Magnetization Charges. The relative permeability

tensor rrom Section 2.2 for Hdc in the x-direction is given by (see

FY: . 4.2):

1 0 0

I. = 0 p ,jK . (4.i8)

0 - K

Substitutions from Eq. 4.18 into Eqs. 4.17 yields p and p as

follows:

... . . . . ..... . . . . . . . ~ - . . . .-..- . . n•



0

000

x 1 00
00 0

z o
Hdc .

L 1 ZJLLz -7 7- - 0 -.-G
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+ K2 (p -) K KK

and

Ps<X,Z) -jK(p -)$ + jK 1  + K-K + 1)

where the upper sign in ps is for z ; z and the lower sign is for
1

z = z . Carrying out the mathematical operations in these equations
2

for v and s gives

~(~) = -1)$(x,z) - - )(1)
az (4.19).

3(xz

,x,z,) 1 _ ±(x,z )"

-- K x,~ + 11 - at z zs2  "1 ' ' z 2.. .

(4.20)

't is tc. r- ncted tl, L tr.er, are :, surface charges at surfaces

x - x or X = - x

. ',iormal !4arneiza_ inr ges The relative permeability

tenor from Section 9.2 . iven F (e, 9ig. 2.3):

'1 K 0

= - .Y VI 0 (4.21)

If P r fr-,rr above is "scd, Eqs. 4.17 fcr v and Ps can be written as:

....

. . . . . . . . . . . . . . -.
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v = - . - 1) - + K K R + jK1 - - - JK(U - ) }

2+ KiK K - l) (4.22a)

and

= 1{L )_lx+K i + K jK( i K(i-l) }.x (4.22b)

where the upper and lower signs are for charges at x = x, a x,

respectively. Upon performing the mathematical operations in the

above and noting that (from Section 2.4.1):
3 2

3 2 4 + P 24) = 0

Pv and ps are finally given by

Pv(X,z )  P 2S(4.23)

and

3$(x , Z)
1= (P 1i) x -K x ) at x x

I K oZ

s(X'Z) = +(a - x ,z)

s 2 + K1K(a - xZ)

at x =a - x (4.24)
0

From Eq. 4.24 it can be seen that the surface charges at z = or z2

are absent and the only existing surface charges are at x = x and0

x = a - x . It will be seen that this difference in the charge

arrangement and mathematical form for the two cases will lead to

different formulations in each case.

- -* * •.
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4.4 Integral Equation

As discussed in Section 4.1, the integral equation (Eq. 4.2)

can be obtained in terms c' x,z) i" h. rcints insic, the

ferrite slab are considered. iinc- .. n1 are ilt'ferent for the

two cases of parallel ani n crm.l ma;rietizati,n., eacl. casf is

considered separately.

4.4.1 Parallel Magnetization :'ornuation. Jhen the appropriate

expression for pv and p from Fqs. 4.19 and 4.20 is used and when

points (x,z) are considered such that {(x,z), x°  x <

Z 1 Z z }, Eq. 4.2 can be written as:

a-x z

$dx,z) [Kj 2(LI- l)t(x',t ) - (I- l)-z 5 (X ,,')] (
(XZ) x z ( z

0 1

a-x
0

*CG(x,x',z,z') dx' dz' + (K K(x7,z 1 - (x'z)

a-x O %

G (x x',z.z dx' + - K K(x',z ) + 4 - (x',z

0

G 2(x,x'z,z ) dx' (4.2)

The integro-differential equation ( 4q. 4.25) is two-dimensional in

(x,z) and is difficult to analyze. Thus the ferrite slab is assormed 0

to be very thin such that ¢(x,z) may be a-sumed to vary linearly in

z. In this approximation two functions of one variable may be used

t, arproximate (x,z) i' e :ollo-winF manner. If

a, id -" -

2 
2

then by linear approximation the f')]lowini s - bt.ir, tn.

W". .......... ..................................................
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f (x) - f (X)

O(x,z) f (x) + 2 ( (z-z) z- z z
2 12

or

f 2(x)(z -z I + f (x)(z - z) .2NT (x,z) f2)( l 1 2 (.26)

z 2-zIZ2 1 Z

which gives

f2 (x) - 1(x)
SZ(XZ) z z4.27)

2 1

and

(X,Z) - 0 (4.28)

Substitution of Eqs. 4.26 through 4.28 in the integral equation (Eq.

4.25) yields

a-x0 2f (xI)(z' z )+ f I(x')(z 2 Z')

K2 1

._ q x 'z f 2)(d ' )(x' - Ki) K (z 2x )zz )z'*x z ~ L 2 z2 I

2 1

Evza) uz it I f~ 1h 2 i~rr..eut np en9 q 9a n

I o (X )z f (x' ( - '

+ 2 )  G (x,x', ,r,) dx' (
2

+ub. titut p fsrr reen' functi.n: 21 _nd 22 fr2r 1. x. x 1 7 i12
ai b

i ti j j- f,)r r(,o ' furict 1 ,n:- 3.1'i ( fr )r . n I I -e



1 (+ 2 ,Ba

a3()

4. 1c

coish -. ,( l' 1z

a-x~~~( X('- )+fX

ixi

1~, 1 x 1 L

+
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a-xI
I 0 f2(x ) f(X '  ) nCo

= - KBK1 fK(x) + - i z 2 - z0 a
2Za

" 0

" a-x

cosh "'z dx + K1Kf2(x) + ( - 2 1

x 02 1
0

cos -x' cosh Ynz dx'
a n 2

Equations 4.30 are rewritten as follows when the integrations in the

z-direction are carried out:

2/a n gn n + n Cn

f1 (x) + 2/a cos-- x(ga 11 + g 12C ) (4.31a)
n=o on

and

2 i 2/a nos x(gn n + gn , (.31)
2 1+ a 211 Z22

no or.

wh.ere

n f (r) Co I x dx

x

Crn  f (x CK s - x dx

2:_f 1 7 J: 2 a)c~. + F1cs

212

-Cosh y' z

n1 = i . (V K- +; ) c ' ' . + 2 co h-'
12 u nr' <V I 1 1. 1 1. 1

-Y~ ,inh "" S y ]I

s 1

-2 I K

- ( " K + i ) ; + -, , " " 211
II I;

[ < f~i "/S



= . . ~ '.Y-+ I cosh -y

2 1 si y' h ybI
rin 1

cosh -Y S
n KK + i o(sl ' oLyF2 2  1'y sinh I'b n' f 2 1 Cos 1

+ P silh~
2 n 2

1a

2

!,Multiplication of Fros. 1..31 bp Cos ~mi/ xand inte,-ra~ ion a~ong, the

int!erfa-ce lfrom x x_ i, x. (a x jI(:s

1+ +

an

x n7

117

T,_ 4__ 2-*.~~"
- +i
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Eqs. 4.32 take the following form in matrix notation:

1311+M M •4. C
1i 13 3

M31 i+ 3"C1

odd modes
i only

Mil .. .I +.M.1 "

(4.33a)

~and

I • M C2

22 24 21

42 1144
even

0 , modes
only

-2 1i

L -(h.33b)

where 1.V and C are matrices defined h'.:

.11 2



To obtain a crv K ,the inf inite

debersmi.nt of tL ;" 7 1 :2w. .. 3 must be zero.

In the numerical ' ..... . .tixe I aermi.at i, truncated

to order N. If sli t ".ve, i :. 
t ls de f'4ned as jf,K),

then the disrersicro - t>..' : sc.ivel numerically for roots is

given by

VI" C (434)

T1 e discussion on tile r -r or choi ce :f for reasonably accurate

results and the rurlc'- "' '- 're--ened in the next charter.

p . r,.r ar,, t -:at nr i c ul)t ion. The integral equation

for this case is Jeer ' Vy uu n Ir rorer K and p given by

(IQ. 4.23 and 4.24. '1 1. follows tlat

a-x
<A:. ,. jx ' ' ,z ,z ") ' dx'

2.

A, :, ?r, Z - 4 X Z,;. 4 < "

, -, 1 -- ,._

x x

+ _,3

X_ ..

.m -< .,,:.n s -. < i :b :' ' : ' ! ' 1 , , i T ,



and zo Z 2 (Fifg. 4 .3). 'The variation of (x,z) in each layer in

the z-direction is assumed to be linear. In this manner three functions,

each having one variable, are used to approximate (x,z) in the slab,

as follows:

f (x) ('
0 0

and

f 2(X) = (X'z2

The linear approximation gives

f (x)(z -Z) + f (x)(z -z

dx~z) , Z z z (4.36a)
z0 1 i

and

fj~z f(x)(Z 2 -Z) + f 2 (x)(z - z) 0 2 <43b
z - z C

2 0

which rives

(zx,z) = Z (x x), (4.37a)
o 1

f' f(x) -f (x)<
z(x~z) - ~ z 5 zoz2 (4.37b)

2 0

and

*f 2(Y.) -f(X) + f (x)
(XZ)(4.38)

dhr 7 Z z % .- t ~~ T.i i- ":(2 slab thickness. In

th -neri~~ I .. ,~. .:n I m d tlhi rd tern2 ire

- :1V V - .-. ~- r
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In the thin-oabanunoI'rc ins Le ad of' a continuous

distribution of surface charce in. -,, the char-e distribution on both

sides of the slab (x and a - x 9in each re~lion =i z =z, an d
0 0' 0

z = 2 is assumed to be un-ifo~r!. Thsuniform charge distribu-

tion assumption connotes that the siurface charge in each region

is equal to the mean of its values at the edgFes of that region.

From Eqs. 4.2~4 the surface charge can be rewritten as

P 41 ,z ~( - i) (X4 ,Z) T K K'4x.z) ,(
4.39a)

where x. x or a -x B ecause of the uniform surface charge

* distribution in the s.-direction in each layer, it follows that

2 x)+ f (xi
i 2 o

andi

(x + f x.

(xi~zZ = z =

Thle rffore, E~q. I4.'39a for p,(x.,s nc's befcomes

f ,X. + f" (xJ f ( + f(x) <

_ = 2

P~ (x + #',( (XIW.Y <

i)2 + ' ~ 'A

2 0 ' j=z

(4.39b)

TeMaji 0-t f-r ,.'.rnifIorm clacv< 'ii :ribuir- aor tlie 9 :ab -.ides~

x =x alid ' x x ISi:Z,~ IY

th re al - ,V . s fu .. ' IiII ttwerni

t he 2e values is tj.'W'.'di . .:v I
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calculatioTiof (x,z) strictly at these three values of z. Thus

continuous charge distribution would not be a plausible assumption

under these conditions. Substituting from Eqs. 4.36 through Eqs.

4.39 into the integro-differential equation given by Eq. 4.35

yields

a-x Z2 f2 (x) - 2f (x') + f (x')$(x~z =1d - 1
x z o '( o (o i

G(x,x',z,z') dz' dx' - 0 0i) o

z 
1

+ KK
f (xO ) + f0 (X o G(xx Z,Z') dz' - L -)

2 0z
o

2G+aK2 o o G(XX Z,Z') dz'+~ K 1 Xo ..+l~ x + l)~ x f (aox. fo ( a  x

+z02 + K K 2

1 ,
0 2; K'( j -X + fA(a x•G(x,a -x05 z, z') dz' + z -2I

of 22axC+0(

+K 1 K - ) ( o X j(x,a - Xz,z'K) (Z' (4.40)

In Eq. 4.40, the z-intecriis can be carried out easily and

may be expressed in terms of on. or(-rm(,re of the following constants:
z

p K

.. . ... .. , .. . . .• •

rii
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z

B c osh -y z' dz'

z 2

B =sCos. y'. - -' z dz'
3 p

and
.2

Bn = cosr- y'(b - z') dz'
4 J z

0

Substituting for G from Eq. 4.11 and carrying out the z-integrals yields

the following when Eq. 4.40 is evaluated at z = z , z and z , respec-
1 o 2

tively:

2v a-x
__ _ _ n.n ° _ ]
n) (B n+ ,fn ) ccsh'z ..z.. f O xf~+ (X 3 afl x  + l on 3 4 "1A11

0

f (x') - 2f (x') + f (x') 2v cos-x
2 0 n n a 0

d2  a a(l + )n=o on

-1 "1"

cosh Y zL{ 2 ) + f'(xf) +-- Lf(x) +

-- ]

K1 K
+ B' 7 [f'(X) + f'(x) ] + -- {ff (x) + fo( )

3 a 2

2v cos - (a - x
n a ___

a(l + 0 c
n=a on

f'(a - x ] + f'(o - x ) + f (a-+ )ri+ - - x

0 0 2 2 0

+ f'(a - x fl + xf (<. - x + " (u - x, (4.41a)
0 0

2. . .
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nv [Bn cosh ynlb - zo) + B r csh Y'zo
f (x) - a(1 + 6 ) 4 - o + oh n

n=o on

a-x
,. a f 2(x')-2f(x') )+f (x') iI xI

Coo xvn  Cos - xon(d-i

0

2v cos nT x
- aa(1 + ) c xs [B cosh ynZ [fx ) + fo(X)]

n~o aon+(Sn-- (x) + f (x csh '(b -

K K 2v cas n7 (a - x

+ -7 [ 2 a - X- ) [ f1 ( a - x )] I+ n ' '( -

+ f(xo)] + 1 l l x + I o~x /J) n a a

o 0coIBTc xBn cash yn - [f(a x + f'(a xo)]

+ f a 4 n) + (a 0 a as 'b-z

K KKn

( K 2 [f'(a - x) + f'(a - x)] + 1 [f (a - x) + f (a - 0o)]
2 10a

(4.41b)

and

'i-i'o .- L]i-ii.[ "... o .. . .' ." . , - •.'_ "..-..-.....-...........-.-......-..............."",
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2vf- (X n( Co f1l S x cosh y'(b - z )(In, + B3)
f.x r1=O on

a-x f(x') - 2f (x') + f (x') 2vf2 0 1 In nlr -T
J-_ d 2  a(l + ) a x

n x n=o on .

1)K K

* cosh y?(b - z ) cosan- xI "(I -2 f)f'(X) + f'(Xo)] + T
- [f (xo

(x )]] + Bn(1 ) f ) + f(X + Ei (x + f (x
o( o 2 2 1 0 20 0 ( 1

• 2v
- cos -- (a- X ) cosh yn'(b - z) c0s x

a(l +~ a 0 n 2 a
no on.

1) oK--

f'(a [f (a - xo) + f (a -x)]
2 2 0 0 2 2 0 0)

+ B [f1(a - xo ) + f.(a x o) + I" [f,(a - x) + fo(a -x)]>"j

(4.4ic)

Eqiations 4.4l describe a set of three coupled equations in terms of'

f f 0 and f . By introducing the following functions, this set can1 0 2

be reduced to a set of two coupled equations which is more attractive:

G (x) f (x) - 2f (x) + f (x) (4.42a)v 2 1

and

G (x) f (x) + 2' (x) + f (x) (h.42b)S 2 0 I1,'

Formin these funct,ions gives

lop

b. . .
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2v

f (x) 2f (x) + f- + 6n ) Cos -x[(B + B n) cosh yn'
2) 0 f1x a(1 1 2

nn on

(b -z) + (B3 + B cosh y'zl 2B3 cay(b- zo) -2B3 cash y' z

2f (x') + f (x)] cos - x' dx' + cos - x

2 (X a a 0
Ix d

K KKF [( -i f(x ) + 2f'(x) + f1(x] - ff( )+2f'x

1 ;Xa - ) + 2 '(a x ) + 2f(a (4 3

+ f 1 (a - x°)[

(aXo)] + li[f'(a - x O ) + 2f'(a - x ) + f'(a - x ] (.143a) "

o 0i 0 1 -

and

2v nLL
f2(x) + 2fo(x) + fl(x) - a(, +6 ) cos - x[(B + B )

aa
ni=0 0:.1

co csh y'(b - z) + (,n + Bn) cosh Y'zl + 2B cosh y'(b z
n n

ciJ - 0 (2 -f) [f (x 2f (x') + f'(x')]4 2B oh YnZo ]  d2  2o

x "d
0

Cna x' dx' + cos-=Xa xo- [f 2 (x) 20) (x ) + f1(xo)]

K aan(a - x )

K Ko [f)(x.) + 2f'(x + f' )] +

K K

[f 2 (a- xa) + 2f (a- x + f (a- x )1 + [f'(a- x)

+ 2f'(a - x + f( - x ) (4.3b)
0 0 1

- . -. *. i-.
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By defining the following constants, 1,:qs. 4.43 simlilies ,reatly:

n n - n
(B + T2

) cosh yI (b )+(4 + 13 ) cosh f'zi
1 2 2 3 4 n

+ 2 n c h (b - z) + 2 j cash y'z 
n  n + n

= v [(B n + Bn) cash '(b - z 2+ (1o
1 2 a 3 4Z

2B-T, cosh y'(b - z 21 cosh -y Iz
1 o 4 no

and

a-x

x lid 2  a
0

7 K,1 K dG x x0Cos -_ x [ - 1 G (x )+ 1 . Co ! (a -
ca o s o 4 dx a 0

• ~~~ K d (a x -- -. "
4 s o 4 dx:

Thus Eqs. 4.43 can be concisely stated as

G W 2 CsnTT ". 'n 4.4a
Gv(x) - a(l + 6) fos n (44)

n=o on

and

- L a( + 6 ) co un (4.44b)
s =(_af on a

The term Qn in qs. 4.44 invc.'ver the first-order derivative of

G (x). The function G(x) [obtainfed from f (x, f (xl and f' (x
< <

is defined to be nonzero in tIe: ferrite slab (x = x = a - x ) and

zero everywhere outside, which mearse,; that t :1:; -incoct nuaus at x =
0
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and x = a - x and thus its derivatives in the x-direction at the slabaO
edues (x or a - x ) are undefined. This problem creates difficulty in

0 0
n

the evaluation of Qn. To overcome this problem of discontinuity, the

< <
function G (x) is defined only in the range x° = x a - x . In this

manner the function G (x) becomes differentiable at x = x or a - x
S0 0

and its approximate finite series expansion can be written as follows:

N N

G (x) p +  pt cos - (x - x + q. a sin (x-xs 0 : a -2x 0o a -2x 0

x xa-x (4.45a)

where p,'s and q,'s are arbitrary constants. Upon differentiation,

d x)N N

dG (x-x) + 9Z

dx - =I a -- 2x Sin -2x -a2x0 o 2 =1 o

1T< <
Cos 2 (x- x ) x = x = - x , (4.45b)

0

where N is a very large integer number. Therefore, when the series
C)

expansinns for G (x) and [dG (x)/dxl are used, the expression for Qn
5 5

becomes

a-xN

W '--) + X- p , +( i
0 + K __ _ _ + CO P- + +

+ 7 . .2',..r, (- l) O . ( 1. .

+ : a - 2x q  4.46)
C

To) (train t.i !'i r i, , the following procedure is

undert k,n: Mu ti i, i (M /i < .X..:,, y and

°~~~~~~~~.-..-./.=.... .... .... ... ... -....... •, ...-- u. ... ,. .........



A3n (m7/ 'a~x and inte~rratior ii. x fc.x x -10 a -x yields the

j followincg liinearly frid eperident eqjuatiocns:

c + ) a~ 0 L.~a

nno

C + = (4.47b)
n~c

and

where

a- x

C' c x v(,) dx
v "I V

0

a-x

0

a- x
m ( inMIT ()l

0

it.- x

n a(i[ + 6 rl) a a

a- x
- 2 E3 In1.0 x cos ll x dx

mn a(l + -T7 a

ann

The term ( f41rom ~q . .( is ex i0 r U 01'4il rt c ~'

ciett an d q inQ I'r :io.I .:' . .ii:
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equations (Eqs. 4.47), it is best to describe Qn in terms of C, Cm
v s

and S
S

in m
To find 1), :I d q's in terms C and S , Eq. 4 V a for (x)

is multiplied by cos (m/a)x and sin (r.71/a)x, respectively. The

resulting equations are then integrated from x = x to x = a - x 0

Thus the following two equations are obtained:

m m (cmo (C)+(cm m )m
s (cc)op + (cc)1 + (cc) P + ... + (SC)mq + (SC) q +

s 1221 1 2 2

(48a)

and

(CPn + (CS) P + (CS)mP +  + (SS) q + (SS)mq +

s5  0 ( C cc 2 2 1S~ 1  (SS 2q 2

(4.48b)

where

a-x
r0

(CC) Cos (x - x ) cos - x dx
n J. a - 2x 0 a

n0

0a - x

r 0T(CS)Mcos (x- x ) sin mx dx
n a - 2x o a

00
0

a-x

0

(SC)" sin (x - x ) cos x dx
n a - 2x o a

a-x
0

(SS)M sin - (x- x ) sin .x dx
J a - 2x

0

-'" - - - - - - - ---"." "." .-' -. .<) . . .'- < . .-. - -



Writing Eqs. 4.48 in matrix Ora y2Y

C' 0

0

S q

£q

NN

AKeru ~ is 0:he coef'flcijOnt matrix Cvnb



O 0 0 0 O 0 0

C) C) C) CO C) U

0 0

00 H0 04 04 04

o 0
0H H I H-- H H Z H

O 0 0 0 0 0 0

-C) C) • C) C]] C) • O

ll0 -)0 0 0

-° )C) C)C

C_) C)' C) C] C)

() 0
O H HH C) H H H H

C-) C) C) (t

C.) r.) C) C),j

09 < . J•L

[C
(3 0HIC ) .~C -

tl '. . ." . ' - .-. - -.. ,.]... .. -- " -.- . ,. . . . - . •*-*"
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Premultiplying Eq. 4.49 by [H] - and observing [H][H -1 = 1

yields

P Co
p0  s

N

PNo [ H] Ca° (4.50)

q S1

s

N
S °

'N o Ss C

Substitution of s and 's in terms of Cm's and S in Q

m m
of Eqs. 4.47 will produce a system of linear equations in C, C and

mSS . To obtain a nontrivial solution for this system of linear equa-
5

tions requires that the large determinant (N x N ) of the coeffi-
0 0

cier:t matrix be set to zero.

In practice the actual size of the matrix needed to obtain

a reasonably accurate answer is smaller than (N x N ) and it depends
0 0

on the particular mode under consideration. In Chapter V Eqs. 4.47

are discussed in detail for the first-order mode (m = 1) and a

computer program based on a truncated matrix is written to provide

numerical ir'sirht into the ,roblem .

& ... .- .. -... -. .-. .- -..- ,..-... ,- - ... .,-. - -.- - -.. ....... .,, .-, ., . ., .- .. ... , . ..*.



CHAPTER V. COMPUTER SIMULATION AND RESULTS

5.1 Introduction

The mathematical formulations presented in Chapters III and

IV were programmed on a computer and the effect of different param-

eters, such as slab position, width and thickness, on the dispersion

characteristics and group time delay was investigated. Most of the

numerical results were obtained for a fixed dc field value of

H = 1800 Oe and a YIG saturation magnetization of M = 1750 Oe.
dc o

The tunable properties for various magnetic dc fields were also

investigated and the results were presented.

As seen earlier, calculation of the dispersion relation for

the purpose of root finding involves evaluation of large matrices.

In Section 5.2 algorithms to find the determinant vnd inverse of a

matrix are presented. This procedure was programmed for use in all

of the determinant calculation0.

Root finding of the dispersion relation is done by the

Newton-Raphson method which is described in Section 5.3. A flow

chart is also provided for use in programming. With the aid of

this algorithm, determinant roots of the dispersion relation are

found through several iterations.

In Section 5.h, the dispersion plots corresponding to the

mode analysis for both parallel and normal magnetization are

presented and several of its ramifications and consequences are

described.

-84-.,

.........................*.....
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Results for the integral equation method are presented in

Section 5.5. The dispersion plots and group time delay are pre-

sented and discussed for both parallel and normal magnetizations.

For the normal magnetization case the analysis for the first- and

zeroth-order modes and its programming are presented in detail.

5.2 Determinant Algorithm

As seen in Chapters III and IV, most of the dispersion relation

equations are based on the calculation and evaluation of the deter-

minant of the coefficient matrix. Therefore, before the roots

of the dispersion relation can be found, a computational method to

calculate the determinant must be developed. The following step-

by-step algorithm was used to compute the determinant and/or the

inverse of a matrix.68 In this algorithm, A is the input matrix of

size n x n, D is the determinant and B is the inverted matrix. To

conserve storage, all stages of A are stored in the same array.

The same applies to B. The steps involved are:

1. Step 1. Input and Initialization. Read F,n (mn1m1-.:'

of rows or columns of A) and a,,; construct the identity matrix

bj; set stage counter K = 1; set D = 1.0. E is used for te .;ti.,-

the matrix singularity and usually is a small number.

2. Step 2. Find pivot element (maximum magnitude element

in column K on or below main diaponal); compare [aKKI, [aK+l,KI,..."

laKI to find the largest, say jaimaxK . Interchange row imax of

A with row K of A (same for B). If imax $ K, E - D. Flement laK.'

is now the largest of the set {taKKI, 1aK+l!.... ank }

*2*. .'
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3. Step 3. Test for near-zero maximum element (singular or

near-singular matrix). If IaKKI c go to error exit. If jaKK > e

continue to Step 4.

4. Step 4. Perform stage K of reduction process:

a. Row K = (Row K/aKK) and D = aKK.D. If div = KK'

then aKj. = anJ/div and bK = b Kj/div (j = 1, n).

b. Row i = Row i -aiK Row K. If mult = ai, then

aij = aij - mult.aKj and bij = bij - mult.bKj.

5. Step 5. Test stage counter K. If K < n, set K = K + 1

and return to Step 2. If K >- n continue to Step 6.

6. Step 6. Write output B = A- 1 and D = JAI.

5.3 Newton-Raphson Method

The equation to be solved numerically is the dispersion rela-

tion, a function of frequency (f) and wave number (K), which can be

written as

D(f,K) = 0 , (5.1)

where D(f,K) represents the determinant of the coefficient matrix

involved in the system of linear equations. Equation 5.1, in

general, is a nonlinear function of f and K and can be quite compli-

cated if the size of the matrix is large.

69With the aid of the Newton-Raphson method, Eq. 5.1 is

solved numerically for roots K (at a known frequency f ) The follow-

.. ing algorithm details the exact steps used in programming Eq. 5.1

in order to find its roots:

1. Step 1. Input and Definition. Read f, = the frequency of

operation, K= the initial approximation of the root of D(f1,K) 0,

....................................
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= the convergence term and N = the maximum number of iterations.

2. Step 2. Initialization. Set iteration counter i = 1. Set

the correction term A = C (C is an arbitrary large positive number).

3. Step 3. Compute successive approximation of root using the

Newton-Raphson iterative formula:

D(f ,K.)

Ki+ = K. - D(f9 i
1+1 D'(f ,K.

Compute the magnitude of the correction term in the current iteration

Ai +1= IKi+1 - Kil

4. Step 4. Test for convergence or failure to converge.

a. if Ai and D(f ,K+)I c, go to Step 5. If not

a.1 1f ai "

continue.

b. If A. > Ai , select new K and return to Step 2. If

A A continue.Ai+j i

c. If i N, set i = i + I and return to Step 3. If i > N,

select new K and return to Step 2.1

5. Step 5. Output root K set K = K.+. Write Ko. Steps

1 to 5 are summarized in the flow chart shown in Fig. 5.1.

5.4 Mode Analysis Computer Simulation

In Chapter III magnetostatic-wave propagation in a waveguide

partially filled with a YIG slab was analyzed. The YIG slab was in

contact with the sidewalls of the waveguide. The dispersion relations

for the two principal directions of magnetization were formulated.

For parallel magnetization, an exact equation for the disper-

sion relation was derived for a YIG slab of arbitrary thickness.

k./-
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For normal magnetization, there is no exact solution possible.

However, the dispersion relation in this case is obtained in terms

of an infinite determinant that should be truncated properly. The

order of truncation depends primarily on the particular mode (m)

under consideration. Numerical root findings of either the exact

equation or the truncated determinant on a computer are facilitated

with the use of the Newton-Raphson iterative algorithm given in

Section 5.3. The corresponding numerical data for the w-k diagram

and group time delay vs. frequency for parallel and normal magneti-

zation directions are presented and discussed in the following

sections.

5 .4.1 Parallel Magnetization. From Eq. 3.17, several effects

in terms of different device dimensions may be studied. The wave-

guide dimensions are assumed to be 2.0 x 1.0 cm and the slab thick-

ness is 0.1 cm. The dispersion characteristics are plotted in Fig.

5.2. In this figure, as the YIG slab is lowered from the top to the

bottom of the waveguide, the dispersion characteristics are restricted

tc lower propagation bandwidths. The middle pusitions of the slab

in the upper half of the guide in some frequency ranges eyhibit nega-

tive slope corresponding to negative group velocity which means

energy propagates in the opposite direction to wave propagation. The

corresponding group time delay inns/cm defined by the relation

T = (/K) -  is shown in Fig. 5.3. From this figure, it can be
d

seen that as the slab separation from the bottom surface is reduced,

the time delay increases while the bandwidth decreases. it should

be noted that these figures are drawn for the first mode and only

for the forward propagating wave.

. . .-... -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .~ *.*.•** ." .-.
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(a)
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(a) z = 0.95 cm, (b) zo 0.8 cm,

(c) zo 0.7 cm, and (d) z.= 0.05 cm

FIG. 5.2 EFFECT OF SLAB POSITION ON THE DISPERSION

CHARACTER~ISTICS.
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Figures 5.4 and 5.5 show the effect of slab thickness on the

dispersion characteristics and group time delay per unit length.

As the slab thickness is reduced the wave propagate in a smaller

bandwidth but with a larger group delay (first mode).

Figure 5.6 shows the first- and second-order modes for

different slab positions. As can be seen, higher-order modes have

cut-off points on the K-axis and as the mode number increases, the

cut-off point also increases. Modes higher than the second are not

lown in this figure.

Tunable properties are also investigated by varying the magnetic

bias field. Figure 5.7 shows the effect of magnetic bias field on the

dispersion curves. As can be seen, the dispersion curves move up or

down the w-k plane by varying H dc. Figure 5.8 shows the corresponding

effect of bias field on the time-delay characteristics.

5.4.2 Normal Magnetization. The zeroth order mode is already

discussed in Section 3.5. To obtain a nontrivial solution for higher

order modes from the system of linear equations given by Eq. 3.22,

the determinant of the coefficient matrix which is infinite in size

must be set to zero. However, for practical purposes, the matrix was

properly truncated for best accuracy. The truncation cut-off point of

the matrix depends on the mode of propagation. For example, for the

first- and second-order modes, matrices of orders up to 12 x 12 were

studied and minimum matrix size was found to be 4 x 4 and 6 x 6, respec-

tively. For higher-order modes, larger matrices must be considered.

A computer program was written, using the determinant algorithm

presented in Section 5.2, to find the determinant of the truncated

coefficient matrix. Roots of this equation are found by using the

.........................
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Newton-Raphson method as described in Section 5.3. Through

numerical analysis it is found that the magnetostatic-wave

. propagation is symmetrical in the guide cross section with respect

to the slab position. This observation was made possible by

noticing that the dispersion curves for slabs positioned in the upper

half of the guide are the same as for slabs positioned

symmetrically in the lower half of the guide. Unlike the parallel

magnetization case, the wave propagation is reciprocal for K and -K.

Figure 5.9 shows the effect of lowering the slab position.

The propagation bandwidth is reduced as can be seen from this figure.

Besides the zeroth-order mode, two higher-order modes are also

shown. These higher-order modes exist due to the finite width of

the slab. It ib noted that there is a frequency cut off for

higher-order modes which increases as the mode number increases.

In Fig. 5.10, the group time delays for different modes are

plotted when the slab is placed against the top or bottom of the

* "guide. This figure shows the increase in time delay as the mode

number increases. Higher-order modes have higher frequency cut-

D off points.

Figure 5.11 shows the effect of the slab position on the

group time delay per unit length. The slab is placed in two

ID 'positions, at the center of the guide and at the bottom or top of the

guide. The time delay increases as the slab is moved toward the

* [. center of the guide.

Figure 5.12 shows the effect of normal magnetic field for

' several bias field values. This effect on the time-delay charac-

-" teristics is shown in Fig. 5.13.

.' , .. ..- i . . -.. - . - .-. -. - . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . " . - . . . . , . .. .. .. ' . . • . -. -. - . . . - .. . . . . . . . '. - . . . . . . . . . .'. . - .. %
..... - -. .'.. -. '-. '- -.- -~ '--.

• V.-'- .- ..- . -. ..' -ZJ-''-._% _''
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5.5 Integral Equation Computer Simulation

In Chapter IV the integral equation method using Green's

function was applied to the problem of magnetostatic-wave propaga-

tion in a YIG slab of finite width in a waveguide. The dispersion

relations for two principal directions of magnetization were derived.

These dispersion relations are in terms of infinitely large deter-

minants as given by Eqs. 4.33 and 4.47.

To be able to solve these determinant equations on the computer,

they must be properly truncated at some cut-off point. This trun-

cation problem was studied on the computer by the method of trial

and error. As a result, the trend of choosing the proper matrix

size was obtained. Thus, it is found that the order of truncation

depends on the particular mode under consideration (m) and the size

of the air gap existing on either side of the YIG slab (xo).
0

Several theoretical results showing this correlation are presented.

Since parallel and normal magnetization each involve separate

formulations, each case is discussed and programmed separately and

the results are presented.

5.5.1 Parallel Magnetization Results. To obtain a nontrivial

n,
unique solution for C 's in Eq. 4.33, the infinite determinant of

the coefficient matrix is set to zero in theory. However in practice,

the size of the matrix is reduced by finding a proper cut-off point

(N). When the determinant of the cut off (U x N) matrix is DN (f,K),

the equation to be solved can be written as D N(f,K) 0.

With the aid of a computer prograx,, results were obtained for

a YIG slab against the upper surface of the waveguide with no wall

gap (i.e., x 0.0). The results are presented in Table 5.1 for

.~. . . . .. . . . . . .. . .. . . . .

o 1.
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N Table 5.1

Comparison of Results

N = 8 Relative Error
Freuecy Exact Root Approximate Root [(K'I - K,)/K.] x 100

f (GHz) K 0 a-)K'(m1 (Percent)

7.5 - 1.145 - 1.1470."

7.9 -2.050 - 2.053 0.15

8.9 - 5.379 - 5.382 0.05

9.5 9.7L48 -9760 0.12

9.9 -22.843 -23.011 0.73

bt

0
a = 2cm
b =1.0cm

t 0.1 CM

Hdcz OO
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N = 8 and are compared with the exact results from the earlier mode

analysis. For all practical purposes, it can be seen from Table 5.1

that the percent error in all cases is less than one percent and

therefore the integral equation does offer a very reliable and

accurate method to calculate dispersion curves, as far as thin films

are concerned.

The effect of increasing the cut-off point (N) (from 2 to 40)

on the dispersion curves is shown in Fig. 5.14. From this figure it

can be seen that for smaller wall gaps, a smaller matrix size is

needed to produce an accurate result.

Figure 5.15 shows the relationship of the normalized wall gap

(2xo/a) and the cut-off point (N). Roughly, there is an exponential

increase in matrix size as the normalized wall gap (2x /a) increases.

This indicates that for narrower slabs more terms are needed to yield

an accurate dispersion relation which can be verified mathematically.

The combined effect of the position and width of the YIG slab

is shown in Fig. 5.16. The time delay is plxtted in Fig. 5.17. It

can be seen that as the slab width aecreases the delay time increases

and the dispersion cu-ves bandwidth shifts downward, while as the

slab position is lowered, the delay time increases and the dispersion

curves are compressed with smaller baridw dths. This means that,

roughly speaking, the position of the slab controls the bandwidth and

its width controls the center frequency of the device. Figure 5.18

shows the effect of increasing the normalized air Fap (2x0 /a) on the

dispersion relation. It is noted that the dispersion curves shift

downward as the air gap increa-i:-. Fitn-ire .9 1its the wave number

vs. the normalized air pay and tl.c freiuenc, i.us'ed as a parameter.

S
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Eratis Pi'Ls ti tLt seer. that an incre:ase in frequency lends

to a higher wavr- nosier o~. malltr wav.elength) at a particular

x. hi fiiure acstcows *:- j at certain frequency, wavelength

does, not chanoe mucntsa_ the ti.s kg x (z. is _-nc-r,-,_pd. This fact can

be Used in transducer Je nfir oxcitation o*. a certain wavelength

at a parti cuflar f-~~n;

5.5.2 I:rmal Matretfzatio. ',ecults. In Section 4.4.2 the

basic formulaticn for, ma ,npt -stat ic -wave propagaticn for a normal

bias field was dierived and was riven by Eqs. 4A.47. In this section

only the zeroth- aind first-crier m-Podes; are co.nsidered. Equations

L-7are used to derive the dispoersion relations in terms of the

determinant of a (5 x 1) matrix. The details of this derivation are

iiven next for more clarity.

For the first- and zereth-order mode (,T, 0, 2 and n 0, 2)

Eqs. 4.147 becomre

C tQw0 + CX4] 1 C (5.2a)
V o1

C' 1a +c Or, 0 , c w (5.2b)
v 1I1

C 0+ a W +~ -a u oI I (5 .2c)
s or, ,01'

1 0 01C s+a OL10U +a cc J 1 (5.2d)

and

A+ U + C i, l (5.2e)

where

J) = -.-.> ~(5.3a)



---C1-- Cos xo('1- L o +P1 K 2K T qj
pd v a 4 P 4 . (a -2x)0 1

2

+ cos - (a x (po + -l K K 1i j (5.3b)a 0 4(a- 2x0)qj

a 00= 1- 2x0/a

a = 2Nsin-' (a -x) sin-l

a1 7

01

10 2

= -~ + -sin 21t1 -21-sin 2n X

610 Tr a o

and

[c1 o -~ s 27T- 2 cos 21Tl [1 x,]

nAs pointed out in Section 4.A4.2, the term Q as given by Eq.

4.4)4 is in terms of p~ and q. To be able to solve Eqs. 5.2 for the

0 1dispersion relation, Q and Q must be expressed in terms of more

familiar constants C , C and S From Section 4.4.2, for m =0, 1

and n =0, 1 it follows that

L5] H C'H (5.4)

q . S
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where

F(cc), (cc), (Sc)0
0 1 1

H ] (cc)' (cc)' (SC)1 (5.5)
0 1 1j

(CS)I (Cs)' (ss):
0 1 1 -

a-x

(cc), dx a -2x
x
0

a-x
) CoS a-2 (x-x) dx = 0

0x

(CC) = Cscos a = sin - (a - x) - sin x

1 fx a 2x 0 0

0

a-x

(cS Cos (x - x ) cos - dx s
0" l a -2TC a

•X 0."0

•.2 sin o ~ + a x+ +2a-xI- 0aa- 2x a--2xx-i a
0 0T

a-aa -Cx }
x

0

oI x
sin + +-"

2x 2x"-

"'(aS~ a "2x a 2x a .

si 2
-. 2x a

0' x

.- .0

-C ) s i -.. . . . ... .x . . . .- 1 o l . . . . . . . .-N , '. -''. '--'-- .- ". -" " -" " ' -' -" a"" ."" -' " " -" '7': : -:' ''' 'L - < -" a " 0 " ': 'L ,:''' : :' ' ''a:: : -.:- -: -" --0 ." "" .:
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a-x711

(CS) Cos 2 (x -x) sin -x dx
X 0

0

2 1X
CIT 0+ a 2xa x]

Tr 71 -2x
a-a 2x a

00

0 2(a - 2x

0T

0

a-x

(SO) sin a-x (x -x) Cos 'Tx dx 2
{a a-2x

0 70

L+~x 
_~2 _XI{.] .-a

'a2x a
0

0

and
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a-x;7T(SS)' = sin a- x - x a
sin (x) sin x dx

-x 0 a 2x- 0 0

Ta-x

2 si 0 IT

1T T xm x a T X] IT

0 0.

s i n o 0 + I "

a -2x a~jj

o o

To express p£ and q. in terms of Cms and Ssm the inverse of matrix [H],

i.e., [H] -' must be known. Matrix inversion is done with the aid of

a computer, so the results of this inversion are used in the follow-

ing equations. To proceed with the analysis, assume [HI -1 is known

and let

H - h: ' h' h' (5.6) --
h 1 22 23 ,

h' h' h'
31 32 33

Substituting Eq. 5.6 into Eq. 5.3 for Q and managing the terms

':ields

-i 1 0 1 1
= 2 -- -  

C + D C + DC + DS S  (5.7)

where

2

D 1, (= + h - 1) cos- x
210 4(a - 2x ) 31 a o

K 2K I T IT
00 + -h' cos- (a-

(h .. <*~~ .' - h' ) h,(;- ) H x o



-118-

- 4 2 h2) - 2x 32 a o

+-(hf -h K a K1T h] Coso (a x)(h 4 ;2 4a- 2xo0) 3 2 a0

and

K2 K ~
(D ( +h') x h Cos-- xD2 -"11 1h3 23 )~ - 1) 3

K 2K iT
+ h 1 - h a ) h Cos- (a - x

4 ;3 ;3) h(a- 2x) h c a x

0

Thus with the help of Eqs. 5.34 and 5.7 for QO and Q1, Eqs. 5.2 in

matrix notation become

C°

V
C1

CV

[M(f,K)l C0  0 , (5.8)
S

s

S1

S1

where

l+FQ WO Fa W D c WI  D c WI D a Wi
00 01 0 01 1 01 2 01

Fa W l+Fa Wi D c W' D c Wi D a W10 11 0 11 1 11 2 11

[M(f,K)] = Eci U0  Fc U' +Dci U1  Dci U1  Dci U1
0 1 0 1 1 2 1

Fa U0  Fa U1  D a UI  1+D a U1  D 0 U'
10 11 o 11 1 11 2 11

FB U0  F' U1 DS U' DS U1  1+DS U1
10 11 o 11 1 11 2 11

and

F =-7-d (5.9)

........................................ . ".. ...



-119-

Requiring a nontrivial unique solution yields the dispersion relation.

This dispersion relation is obtained by setting the determinant of

[M(f,K)] to zero.

For the special case of the zeroth-order mode, the dispersion

relation is riven by (m = 0, n = 0):

1 + Fa w0  = 0 (5.10)
00

To find the dispersion relation for the first-order mode, the

following equation must be solved:

IM(fK)I = (511)

Separate computer prograis were written for each mode to calculate

the roots of Eqs. 5.10 and 5.11.

Figure 5.20 shows the effect of slab position in the waveguide

on the dispersion characteristics. From this figure it can be seen

that the effect of slab position on the disTpersion curve becomes

proncunced at the higher frequencies in the provaFation band.

Alt hough the characteristics all converFe at the lower end, of the

oroparaticn band, their slopes are different. This leads to

different group time delays as cant be seen in _'. .21. This figure

sizows the group time delay corresfponding- to L I. '.'0. As noted jn

Fir. 5.21, as the slab is placed toward the center of the Fuide, the

group time delay increases while the oroagaticn bandwidth decreases.

Width effects on the device neiformance wns also studied and Le

results are shown in Firs. 5.22 and 5.23. in -i , it can be

seen that as the normalized air nr. increases the ircInrnition band-

width decreases and the curves ,latten QuZ -,s they ift (wrd

)..) . .vvv...i ...- .... '..-... ................. . ... -
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higher frequencies. Figure 5.23 shows the corresponding group time

delay vs. frequency. From this figure it can be seen that as the

slab width decreases (or the air gap increases) the group time delay

increases toward higher values with smaller bandwidths as noted

earlier. The group time delay at smaller slab widths remains

constant in a larger bandwidth and also has a higher value. This

property can be used effectively in device design to obtain a con-

stant, high group delay per unit length in a desired frequency

band. Figure 5.24 plots wave number K vs. the normalized air gap

(2x /a). In this figure, the information of Fig. 5.22 is rearranged

in a different fashion. It can be seen that the wave propagation

at small slab widths (or large air gap) is possible only at higher

frequencies with smaller wavelengths (or higher K). Once the slab

width is chosen, Fig. 5.24 shows the frequency at which the device

must be operated to obtain a certain wavelength, and vice versa.

Thickness effects are shown in Fig. 5.25. This figure shows

that as the normalized thickness (t/b) increases the dispersion

characteristics shift upward toward higher frequencies with lower

propagation bandwidths. The corresponding group time delay per unit

length is shown in Fig. 5.26. In this figure it is noted that as the

- •. normalized slab thickness increases from zero, the group time delay

decreases and achieves its minimum value at t/b = 0.5 (i.e., when

50 percent of the guide is filled with YIG). From this point on, as

the slab thickness increases, the time delay increases rapidly to

high values. Although the time delay value is very high for

0.5 < t/b < 1, the available bandwidth for which the time delay io

a constant value is very small and limited. On the other hand, in

0
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the region 0 < t/b < 0.1, the time delay approaches high values and

remains constant over a large frequency range. This shows the great

potential of thin films to provide constant and high values of group

time delay in delay line applications with a fairly large bandwidth.

Figure 5.27 plots the initial constant group time delay vs.

the normalized slab thickness. In this figure, the minimum occurs

at t/b = 0.5 and the curve is unsymmetrical about this minimum value.

From these observations, it can be concluded that to obtain

high values of group time delay over a large bandwidth, very thin

slabs are required. To increase the time delay even more, it is

best to choose a narrow width slab and place it in the center of the

waveguide. It should be mentioned that for more accuracy, Figs.

5.25, 5.26 and 5.27 are based on the composition of results obtained

from mode analysis (Eq. 3.22) for large thicknesses and integral

equation formulations (Eqs. 4.47) for small thicknesses.

. ..
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CHAPTER VI. CONCLUSIONS

6.1 Summary and Conclusions

The objective of this study was to gain a better understanding

of magnetostatic-wave propagation in YIG-loaded rectangular wave-

guides. Both theoretical and numerical investigations were carried

out to achieve this objective.

In Chapter II, the general problem of wave propagation in

an unbounded ferrite medium was formulated and magnetostatic waves

which propagate only in a limited range of wavelengths were identi-

fied. Next, magnetostatic-wave propagation in bounded media was

studied and several important structures were analyzed. The boundary

conditions that these waves should satisfy at the metal boundaries

or on the slab surfaces were also introduced.

In Chapter III, magnetostatic-wave propagation in a YIG slab

placed symmetrically inside a waveguide was studied. The slab had

the same width as the guide and therefore a mode analysis was very

useful in formulating the dispersion relations for parallel and

normal magnetization. It was also shown that the obtained dispersion

relations reduced to the published results for the degenerate cases

when one or more of the metallic boundaries of the guide were

driven to infinity.

In Chapter IV, a modified configuration was studied. In this

configuration there was an equal air gap on both sides between the

slab and the sidewall of the guide. The integral equation method

I"
was effectively employed to obtain the dispersion relations for two --

-130-
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-131- S

cases of normal and parallel magnetization. The obtained dispersion

relations involved infinite determinants which were properly trun-

cated for nurerical study.

In Chapter V, an extensive numerical analysis was carried out. ..

Since most of the obtained dispersion relations were in terms of

infinite determinants, the proer trunoation. of these determinants was

studied and the results of this truncation were shown. With the help

of the Newton-Raphson method the roots of the truncated determinant

were found and plotted to obtain dispersion and group time-delay

characteristics for both normal and parallel magnetization cases.

In conclusion, the analysis and numerical simulation carried S

out in this work were revealing of the magnetostatic-wave behavior

in a ferrite-loaded waveguide. The width, thickness, and position

of the slab were shown to be a determining factor in the device

Derformance. The following conclusions can be stated briefly:

1. For parallel magnetization, to obtain high time-delay values,

the YIG slab must be thin, narrow and placed at the bottom of the 0

guide. On the other hand, to maximize the device bandwidth, a

thick, narrow YIG slab positioned at the top of the guide is

preferred. 0

2. For normal magnetization, to achieve high values of time

delay, again a thin, narrow slab must be used. This time it should

be ilaced in the center of the guide. kiln the other hand, high S

bandwiiths can be obtained by usintg wide, thin slabs placed at the

too or bottom of' the guide.

It is noted that there existr; a%  r ff hi etwen the-  time

delay and the device bandwidth'., ran ,i . cne ,rcerty

S. . . ... ::.-.:...:.:
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leads to a poor value in the other. Thus some design compromises

should be made.

In general, based on the presented analysis in the previous

chapters and certain design specifications, an optimum device geometry

can be designed to provide the best device performance over a desired

frequency range.

6.2 Suggestions for Further Study

The formulation developed in this investigation for two

principal directions of magnetization provides good simulation

results and insight into the device performance. However, there are

several additional topics that would help to realize the full poten-

tial of magnetostatic-wave devices and thus need further study.

They are:

1. A study of magnetostatic-wave propagation in a waveguide in

the presence of (a) a magnetic bias field in the transverse plane at

an angle e to the slab plane and (b) an axial magnetization.
0

2. An analysis and proper modeling of the propagation losses.

3. An analysis of magnetostatie-wave propagation in a thick

YIG slab in a waveguide (x 0 0).

4. The design and fabrication of the devices and experimental

studies of the magnetostatic-wave propagation properties and

comparison with the theoretical results.

5. A study of the higher-order modes for signal processing

applications.

S... -.................. .. ... •...............................



APPENDIX A. SA LE COMFUTER PROGAMIS

The following sample programs in FORTRAN are written to

solve for roots (K) of the function 6(K,JMODE,U,KI) by using the

Newton-Raphson method. The function G(K,JMODE,U,Kl) represents

the determinant of the truncated coefficient matrix. These programs

are based on the determinant calculation procedure and the Newton-

Raphson iterative method as described in Chapter V. The most

important symbols used in this program are defined as follows:

A Waveguide width in cm.

B Waveguide height in cm.

D One half of the slab thickness in cm.

FRQ Operating frequency in GHz.

HI Internal dc magnetic field in Ge.

JMODE The specific mode under consideration.

K Wave number in cm- 1.

Ki Off-diagonal term of the permeability tensor.

LN Size of the truncated matrix.

MS Magnetization situraticn in De.

XKX The initial value c K te -,tart the iterat'on.

XO Gall len-th in cm.

U Diagonal tern of the ,vaeabrity teror.

ZO Positior. of' tee h : ab inthe wave uid in em.

The first sar.a, y.r ' f ,in the rcFtn of Uj dfi'eersion

relation as wiven by the ,oefficient -.atLix o" I. . * were -i x i

is in the x-direction. 1'12 i,r,:waM () l" tIe fe 1 lowing I rt L

-1 33-
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1 TA1. Main program--finds the roots of function G by using the

Newton-Raphson method.

2. Function G(K,JMODE,U,K1).--constructs and loads the truncated

matrix. This function subprogram takes as its input the wave number

(K), the qpecific mode under study (JMODE), and the operating frequency

(U,Kl) and returns the determinant of the truncated matrix in G by

calling function )CDET(2A,N).

3. Function XDET(A,N)--computes the determinant of the N by N

truncated matrix A and returns the value of the determinant in XDET.

C...................... PROGRAM #1.......................
C ....... PROGRAM TO CALCULATE ROOTS WHEN XO IS NOT ZERO AND
C ........Mdc IS PARALLEL TO THE SLAB PLANE, i.e., Hdc=HO.X
C ....... THIS PROGRAM CALCULATES ROOTS OF THE ODD MODES ONLY.
C
C
C ....... THIS IS THE MAIN PROGRAM IN FORTRAN

C ........EQUATION G(FRQ,K)=O USING THE NEWTON-RAPHSON METHOD,

C........ WHERE FREQUENCY(FRQ) IS A KNOWN VALUE.
IMPLICIT REAL*4 (K,M)
DIMENSION DELTA(15),K(15)
COMMThON A,B,D,ZO,XO,LN
EPS=.5
DK=. 1
NITER=5
DELTA( 1)=100000.
KX=- 1.
DO 300 NR=1,5

C ........INPUT STATEMENT TO SET THE VALUES OF FREQUENCY(FRQ),
C ........INITIAL WAVE NUMBER(XKX),GAP LENGTH(XO),MATRIX SIZE
C ........(LN=5),SLAB POSITION(ZO),WAVEGUIDE WIDTH(A),WAVEGUIDE
C ....... HEIGHT(B),ONE HALF SLAB THICKNESS(D) ,SATURATION
C ....... MAGNETIZATION(MS),INTERNAL DC MAGNETIC FIELD(HI) AND
C ....... MODE UNDER STUDY(JMODE).

NAMELIST/RAD/FRQ,XKX, XO,LN,ZO,A,B,D,MS,H1,JMODE
READ (5,RAD)
WRITE(6,RAD)

201 FORMAT(F1O.3,I2)
K( 1)=XKX

90 FORIAAT(//3X,3F20.3)
93 FORMAT(12.3F10.3)
91 FORMAT(2F10.3)

FRQO=2 .8*HI/1000.
FRQM=2.8*MS/1000.
DEL=FRQ0*1 2-FRQ**2
K 1=FRQ*FRQM/DEL
U= 1 . Kl1*FRQO/FRQ
WRITE(6,90) U,D,ZO

C ........ROOT FINDING BY ITERATIVE STEPS



- -

96 DO 200 I=1,NITER

XKDK=K(I )-DK
XV=G(XKDK ,JMODE,U, K )
XW=G (K (I), MODE U,*K i)
GPRIM= (XV-XW) /DK
WRITE(6,9C) GPRIM,XV,XW
K(I 1)=K(I )-XW/GPRIM
DIFF=K(I 1)-K(I)
DELTA(I 1)=ABS(DIFF)
XX=G(K(I1),JMODE,U,KI)
IF (DELTA(I1) .LE. EPS) GO TO 98

F2 lF(DELTA..2 .LE. DELTA(:)) GO TO 95
GO TO 97

98 IF (ABS(XX) .LE. EPS) GO TO 100
GO TO 92

97 WRITE(6,90) K(I ),DELTA( ) ,DELTA(I 1)
K( 1)=K(1 )+KX

WRITE(6,89) K(1)
89 FORMAT(3X,'K(1) IS RESET TO A NEW VALUE:',P'9.2)

GO TO 96
99 WRITE (6,94) I,K(I1),DELTA(I1),XX
200 CONTINUE
100 WRITE (6,94) I, K(Il),DELTA(Il),XX
94 FORMAT( 2, 2F 10.3, F20.3)
300 CONTINUE

STOP
END

C........ FUNCTION G(F,K) DESCRIBES THE DETERMINANT OF AN
C........ N BY N TRUNCATED VATRIX.TPE VALUE OF THE GAP
C........ LENGTH(XO) IS NOT ZERO AND Hdc=HO.X.

FUNCTION G(K,JMODE,U,KI)
IMPLICIT REALMK
DIMENSION XM(40,40,2,2) ,G1(40,2,2) ,BIG(40,40) ,BETA(40,40),

1II(40),33(40)

COMMON A,B,D,ZO,X0,LN
200 FORMAT(2X,'XD=',F7.3,' LN,2,2)S

XO0A =X 0/A
Z 1=Zo-D
Z2=Z0+D
P1=3.1416
Si =B-Z 1
S2=B-Z2
DO 10 I=1,LN,2
DO 20 3=1jZN,2
ALFA=JsPI ,'A
ArLFA2=ALFA*ALFA
GAMA=SQRT(ALFA2-K*K)
%1.0//(GAV.A*~SI NH)GAVA *9

P1= K!*K-P2
P3=(Ut. *K*W/GAMA
P4=-P2+K1*K

C2 C0SH1CI.'.A*Z2)
CS1 COSH(G,M'A*Sl)
CS2 COSH(GAMA*S2)
G1(3 II ='*CZIlP 4

,PCS1.P
2
*CS2P3*SINH(GAMA*Sl))

G I(1 *,2) \ *CZ *P *CS2 P2 *CS 1-P3*51 NH (GAMA*S2)
GI(),' )V*CS2.( P4*CZI=P2*CZ2-P3*SINH(GAMA*Zl))

DO 30 -21,2

1 .EQ. 3)GO 7:) 0

31 -3

Az 1i32.PI tX, A

BETA :,,: =-.~ tt)'* SlN( l) jl)+ SlN A2)/ J20



50 A3-2*I*PI*XOA
BETA(I 1)=1.-2*XOA-SIN(A3)/(I*PI)
XM(I,I,L2,L)=BETA(I,I)*GI(I,L2,L)

40 CONTINUEI30 CONTINUE
20 CONTINUE
10 CONTINUE
C......... LOADING THE BIG MATRIX

DO 60 1-1,2
DO 60 J=1,2
DO 55 L=1,LN,2
II (L)=I+L-1
JJ(L)=J+L- 1

55 CONTINUE
DO 56 L2=1,LN,2
DO 57 L3=1,LN,2
BIG(II(L2),JJ(L3))=XM(L2,L3,I,J)

57 CONTINUE
56 CONTINUE
60 CONTINUE

LNI1=LN+ 1
DO 70 I=1,LN1

70 BIG(I ,I)=BIG(I,I)+1.0
G=XDET(BIG,LN1)
RETURN
END

C........ FUNCTION SUBPROGRAM TO CALCULATE THE DETERMINANT
C ....... OF AN NBYN MATRIX A.

* FUNCTION XDET(A,N)
DIMENSION A(40,40) ,B(40,40)
EPS= .00001

C........ CONSTRUCT IDENTITY MATRIX
DO 6 I=1,N
DO 5 J=1,'N
IF (I-3) 4,3,4

3 B(I,J)=1.
GO TO 5

4 B(I,J)=0.0
5 CONTINUE
6 CONTINUE
C........ LOCATE MAXIMUM MAGNITUDE A(I,K) ON OR BELOW MAIN
C........ DIAGONAL

DEL= 1.0
DO 45 K=1,N
IF (K-N) 12,30,30

12 IMAX=K

AMAX=ABS(A(K,K))
KP 1=K+ 1
DO 20 I=KP1,N
IF (AMAX-ABS(A(I,K))) 15,20,20

15 IMAX=I
AMAX=ABS(A (I ,K))

*20 CONTINUE
C........ INTERCHANGE ROWS IMAX AND K IF IMAX NOT EQUAL TO K

IF (IMAX-K) 25,30,25
25 DO 29 J=1,N

ATMP=A( IMAX,J)

A (K,3) =ATMP
BTMP=B(IMAX,J)

* ~B( IMAX ,3)=B (K 3)
29 B(K,J)=BTMP

DEL= -DEL
30 CONTINUE

IF (ABS(A(K,K))-EPS) 93,93,35
C........ TEST FOR SINGULAR MATRIX
35 DEL=A(K,K)*DEL
C........ DIVIDE PIVOT ROW BY ITS MAIN DIAGONAL ELEMENT

DIV=A(K,K)
DO 3B J=1,N
A (K, 3)=A (K, 3)/DIV

38 B(K,3 )=B(K,J )/DIV
C........ REPLACE EACH ROW BY LINEAR COMBINATION WITH PIVOT ROW
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DO 43 I=I,N
AMULT=A(I,K)
IF(I-K) 39,43,39

39 DO 42 J=1,N
A(I,J)=A(I,J)-AMULT*A(K,J)

42 B(I ,J)=B(I,J)-AMULT*B(K,J)
43 CONTINUE
45 CONTINUE

XDET=DEL
99 RETURN
93 GO TO 99

END

The second sample program finds the roots of the dispersion

relation for zeroth- and first-order modes as described by a 5 by 5

matrix given by Eq. 5.10 where Hdc is in the z-direction. This

program has the following parts:

1. Main program--finds the roots of function G.

2. Punction G(K,JMODE,U,K1)--constructs and loads the

truncated 5 by 5 matrix. This function subprogram takes as its

input the wave number (K), the specific mode under study (JMODE), and

the operating frequency (U,K1) and returns the determinant of the

truncated matrix in (by culling subroutine XINV(A,B,XDET,N4).

3. Subroutine XIIIV(A,B,XDET,N)--computes the inverse of the

N truncated matrix A and return'- il in matrix B. This

;u:,ro tine also computes the determinant of mat-ix A and returns

t in :DELT.

C ......................... PROGRAM #2 .......................
C ....... PROGRAM TO CALCULATE ROOTS WHEN X0 IS NOT ZERO AND
C ....... Hdc IS NORMAL TO THE SLAB,i.e., Hdc=HO.Z
C ....... THIS PROGRAM CALCULATES ROOTS OF THE FIRST MODE ONLY.

C
C ....... THIS IS THE MAIN PROGRAM WRITTEN IN FORTRAN SOLVING
C ....... FOR ROOTS (K) OF THE NONLINEAR EQUATION G(FRQ,K)=0.
C ........ USING THE NEWTON-RAPHSON METHOD, WHERE FRQ IS KNOWN.

IMPLICIT REAL*4 (K,M)
DIMENSION DELTA(15),K(15)
COMON A,B,D, ZO,XO,LN,MS ,HI
EPS . .
DK=. 1
NITER=5
DELTA(I)=100000.KX=-I . - .

no iV~n NR=1,5

"..'
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C ........INPUT STATEMENT TO SET THE VALUES OF FREQUENCY(FRQ),
C ........INITIAL WAVE NUMBER(XKX),GAP LENGTH(XO),MATRIX SIZE
C...*.....(LN=5),SLAB POSITION(ZO),WAVEGUIDE WIDTH(A),WAVEGUIDE
C C....... HEIGHT(B),ONE HALF SLAB THICKNESS(D),SATURATION
C ....... MAGNETIZATION(MS),INTERNAL DC MAGNETIC FIELD(HI),HODE
C ....... UNDER STUDY(JMODE).

NAMELIST/RAD/FRQ,XKX, XO,LN,ZO,A,B,D,MS,HI ,JMODE
READ (5,RAD)
WRITE(6,RAD)

201 FORMAT(F1O.3,I2)
K( 1)=XKX

90 FORMAT (//3X,3F20.3)
93 FORMAT(12,3F10.3)
91 FORMAT(2FI0.3)

FRQO=2 .8 *HI / 1000.
FRQM=2.8*MS/1000.
DEL=FRQO**2-FRQ**2
Kl1=FRQ*FRQM/DEL
U=1 .+Kl*FRQ0/FRQ
WRITE(6,90) U,K1,Z0

C ....... ROOT FINDING BY ITERATIVE STEPS
96 DO 200 I=1,NITER

1=1 + 1
XKDK=K(I )+DK
XV=G(XKDK,JMODE,U,K1)
XW=G(K(I ),JMODE,U,KI)
GPRIM=(XV-XW)/DK

* WRITE(6,90) GPRIM,XV,XW
K(Il1)=K(I )-XW/GPRIM
DIFF=K(Il1)-K(I)
DELTA(Il1)=ABS(DIFF)
XX=G(K(I 1 ),JMODE,U,Kl)
IF (DELTA(11) .LE. EPS) GO TO 98

92 IF(DELTA(I1) .LE. DELTA(I) GO TO 99
GC TO 97

98 IF (ABS(XX) .LE. EPS) GO TO 100
GO TO 92

97 WRITE(6,90) K(I ),DELTA(I) ,DELTA(I 1)
K( 1)=K( 1)+KX
WRITE(6,89) K(1)

89 FORMAT(3X,'K(1) IS RESET TO A NEW VALUE:',F9.2)
GO TO 96

99 WRITE (6,94) I,K(I1),DELTA(I1),XX
200 CONTINUE
100 WRITE (6,94) 1, K(I1),DELTA(I1),XX
94 FOR1NAT( 12,2F 10.3 ,F20. 3)
300 CONTINUE

STOP
END

C ....... FUNCTION G(F,K) DESCRIBES THE DETERMINANT OF A
C ........5 BY 5 MATRIX FOR THE FIRST-ORDER MODE, WHEN
C C....... Hdc=HO.Z AND XO IS NOT EQUAL TO ZERO.

FUNCTION G(K,JMODE,U,K1)
IMPLICIT REALMK
DIMENSION XA(40,40) ,XB(40,40) ,VN(2) ,UN(2) ,BIG(40,40)
COMMhON A,B,D, ZO,XO,LN,MS,HI
Zl1=ZO-D
Z2=ZO+D
P1=3. 1416

* BZO=B-ZO
BZ 1=B-Z1
BZ2=B-Z2
XOA=XO/A
AXO=A-XO
A2XO=A-2*X0
AO=-PI*XO/A2X0
Al =-2*AO/A
A2-2*PI*( 1-XOA)/A2X0
PA2-PI *AXO/A
PAl1 PI *XOA
A3-AO+A2*AXO



A4=AO+A2*XO
A5-AO+A1 *AXO
A6=AD+A]I*XC
S34-.5*(SIN(A3)-SIN(A4))/A2
S56=.5*(S:N(A5)-SlN(A6))/Al
C34=.5*(-COS(A3)+COS(A4))/A2d C56=.5*(-COS(A5)+COS(A6))/Al
XA (1 ,1) =A2XO
XA( 1,2)=0.
XA( 1,3)=2*A2X0/Pl
XA(2, I)=.318*A*(S1'4(PA2)-SIN(PAl))
XA (2, 2) = S34+S56
XA( 2,3) =C34+C56
XA( 3, 1) =.31 8*A* (COS (PA2) -COS (PA 1))
XA (3, 2) =C34-C 56
XA (3,3) =S34-S56
NN= 3
CALL XINV(XA,XB,XDET,NN)
DO 10 I=1,2
II=I-l
ALFA=I I*PI IA
A.L'A 2 =AL A *AL FA

b GAMA=SQRT(ALFA2+K*K)
W=1 .0/(GAMA*SINH(GAMA*B))
F=(U-1 . ),(U*DsD)
SZO=SINH(GAMA*ZO)
SZ 1=SINH(GAMA*Z1)
SZ2=SINH(GAMA*Z2)
SBZO=SINH(GAMA*BZO)
SBz1=SINH(GAMA*BZ1)

* SBZ2=SINH(GAMA*BZ2)
CZO=COSH(GAMA*Z0)
CZI=COSH(GAMA*Z1)
CBZO=COSH(GAMA*BZO)
CBZ2=COSH(GAMA*BZ2)
B1= (SZO-SZ 1)/GAMA
B2=(SZ2-SZO)/GAMA
B3= (-SBZO+SBZI1)/GAMA
B4= (-SBZ2+SBZO)1GAMA
VN(I)=W*((BI-B2)*CBZ2+(B3+B4)*CZ1-2*Bl*CBZO-2*B4*CZO)
UN (I) =VN ( I) 4 *w,*8*CBZO+4 *W*B4 *CZO

10 CONTINUE
CC 1=COS(IPA I
CC2=COS(IPA2)
DCO=-.25* (K*K*KI*P ) *(C+CC2)/A2X0
U14=(U- 1)/4
DC1=U14*(XB( 1,1 )+XB(2, 1))
DC2=U14*(XB( 1,1)-XB(2, 1))
DC3=U 14* )XB( 1,2) +XB( 2,2) )
DC4=Ul4*(XB(1,2)-XB(2,2))
DC5=U 14* (XD(1 ,3) +XB( 2,3))
DC6=U14 * (XB(1 ,3) -XB (2,3))
DO=-DCI*CCI+DC2*CC2+DCO*XB(3,1)
Dl=-DC3*CCI1.DC4*CC2+DCO*XB( 3,2)
D2=-DC5*CC 1 +C6*CC2+DCO*XB (3,3)
AOO= 1 .-2*XOA
AC 1 =.6366* (SI N (PA2 )-SI N(PA 1))
Al 0=AO 1/2.
AII=AOO+.159*(SIN(2*PA2)-SIN(2sPA1))
B10=.318*(COS(PA1 )-COS(PA2))
B1I=.159.(COS(2*PAI)-COS(2*PA2))
AVO=AC 1 VN 12)

*AV1 =A 1 1*%IN (2)
AUO=AC 1*UN(2)
AUI=AI I*UN(2)
BUI=B1 1*UN(2)

C ....... LOADING THE MATRIX IN THE FINAL FORM READY
C ....... FOR DETERMINANT CAL-CULATION.

BIG( 1,!1=1 .+F*A0O*VN(l1
BIG( 1,2)=F*AVO
BIG) 1,3)=DO*AVO
BIG) 1,4)=D1*AVO
BIG( 1,5)=D2*AVO
BIG(2,l1)=F*AlOtVN( 1)
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BIG( 2,2)= 1. +F*AV1
BIG( 2,3) =DO*AV1
BIG( 2,4) =D1 *AVI
BIG(2,5)=D2*AV1
BIG(3, 1)=F*A0O*UN( 1)
BIG(3,2;=F*AU0
BIG(3,3)=1 .+DO*AUO
BIG(3,4)=Dl*AUO
BIG(3,5)=D2*AUO
BIG(4, 1).F*AIO*UN( 1)
BIG(4,2)=F*AUI
BIG(4, 3)=DO*AU1
BIG(4,4)=1 .+D1*AU1
BIG(4 ,5)=02*AUI
BIG(5, 1)=F*BIO*UN(1)
BIG(5,2)=F*BU1
BIG(5, 3)=D0*BU1
BIG( 5,4 )=D1*BU1
BIG(5,5)=1 .+D2*BU1
LN= 5
CALL XINV(BIG,XB,XDET,LN)
G=XDET
RETURN
END

C........ SUBROUTINE FOR DETERMINANT CALCULATION AND
C ....... MATRIX INVERSION BY ELIMINATION WITH
C ....... PARTIAL PIVOTING.

* SUBROUTINE XINV(A,B,XDET,N)
C........ A=ORIGINAL MATRIX, B=IVERSE MATRIX, XDET=
C ....... DETERMINANT, N=MATRIX SIZE.

DIMENSION A(40,40),B(40,40)
EPS= .00001

C ....... CONSTRUCT IDENTITY MATRIX.B(I,J)=1

DO 6 I=1,N
DO 5 J=1,N
IF (I-J) 4,3,4

3 B(I,J)=1.
GO TO 5

4 B(I,J)=0.0
5 CONTINUE
6 CONTINUE
C ....... LOCATE MAXIMUM MAGNITUDE A(I,K) ON OR BELOW MAIN
C ....... DIAGONAL

DEL= 1.0
DO 45 K=1,N
IF (K-N) 12,30,30

12 IMAX=K
AMAX=ABS(A(K,K))
KP1=K+1
DO 20 I=KP1,N
IF (AMAX-ABS(A(I,K))) 15,20,20

15 IMAX=I
AMAX=ABS(A(I ,K))

20 CONTINUE
C ....... INTERCHANGE ROWS IMAX AND K IF IMAX NOT EQUAL TO K

IF (IMAX-K) 25,30,25
25 DO 29 J-1,N

ATMP=A(IMAX,J)
A(IMAX,J)=A(K,J)
A(K,3)=ATMP
BTMP=B(IMAX,J)
B(IMAX,J)=B(K,J)

29 B(K,3)=BTMP
DEL =-DEL

30 CONTINUE
IF (ABS(A(K,K))-Eps) 93,93,35

C ....... TEST FOR SINGULAR MATRIX
35 DEL=A(K,K)*DEL



C ....... DIVIDE PIVOT ROW BY ITS MdAIN DIAGONAL ELEMENT
DIV=A(K ,K)
DO 38 J=1,N

38 B(K,J)=B(K,J)/DIV
C ....... REPLACE EACH ROW BY LINEAR COMBINATION WITH PIVOT ROW

DO 43 I=1,N
AMULT=A(I ,K)
IF(I-K) 39,43,39

39 DO 42 J=1,N
A(I,J)=A(I,J)-AMULT*A(K,J)

42 B(I,J)=B(I,J)-AMULT*B(K,J)
43 CONTINUE
45 CONTINUE

XDET=DEL
99 RETURN
93 GOTO99

END
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